This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Hypothesis builder for supremum. (Contributed by Mario Carneiro, 20-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfsup.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| nfsup.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
| nfsup.3 | ⊢ Ⅎ 𝑥 𝑅 | ||
| Assertion | nfsup | ⊢ Ⅎ 𝑥 sup ( 𝐴 , 𝐵 , 𝑅 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsup.1 | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | nfsup.2 | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | nfsup.3 | ⊢ Ⅎ 𝑥 𝑅 | |
| 4 | dfsup2 | ⊢ sup ( 𝐴 , 𝐵 , 𝑅 ) = ∪ ( 𝐵 ∖ ( ( ◡ 𝑅 “ 𝐴 ) ∪ ( 𝑅 “ ( 𝐵 ∖ ( ◡ 𝑅 “ 𝐴 ) ) ) ) ) | |
| 5 | 3 | nfcnv | ⊢ Ⅎ 𝑥 ◡ 𝑅 |
| 6 | 5 1 | nfima | ⊢ Ⅎ 𝑥 ( ◡ 𝑅 “ 𝐴 ) |
| 7 | 2 6 | nfdif | ⊢ Ⅎ 𝑥 ( 𝐵 ∖ ( ◡ 𝑅 “ 𝐴 ) ) |
| 8 | 3 7 | nfima | ⊢ Ⅎ 𝑥 ( 𝑅 “ ( 𝐵 ∖ ( ◡ 𝑅 “ 𝐴 ) ) ) |
| 9 | 6 8 | nfun | ⊢ Ⅎ 𝑥 ( ( ◡ 𝑅 “ 𝐴 ) ∪ ( 𝑅 “ ( 𝐵 ∖ ( ◡ 𝑅 “ 𝐴 ) ) ) ) |
| 10 | 2 9 | nfdif | ⊢ Ⅎ 𝑥 ( 𝐵 ∖ ( ( ◡ 𝑅 “ 𝐴 ) ∪ ( 𝑅 “ ( 𝐵 ∖ ( ◡ 𝑅 “ 𝐴 ) ) ) ) ) |
| 11 | 10 | nfuni | ⊢ Ⅎ 𝑥 ∪ ( 𝐵 ∖ ( ( ◡ 𝑅 “ 𝐴 ) ∪ ( 𝑅 “ ( 𝐵 ∖ ( ◡ 𝑅 “ 𝐴 ) ) ) ) ) |
| 12 | 4 11 | nfcxfr | ⊢ Ⅎ 𝑥 sup ( 𝐴 , 𝐵 , 𝑅 ) |