This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005) (Revised by Mario Carneiro, 6-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suprleub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suprnub | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( ¬ 𝐵 < sup ( 𝐴 , ℝ , < ) ↔ ∀ 𝑤 ∈ 𝐴 ¬ 𝐵 < 𝑤 ) ) | |
| 2 | suprcl | ⊢ ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) → sup ( 𝐴 , ℝ , < ) ∈ ℝ ) | |
| 3 | lenlt | ⊢ ( ( sup ( 𝐴 , ℝ , < ) ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup ( 𝐴 , ℝ , < ) ) ) | |
| 4 | 2 3 | sylan | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ¬ 𝐵 < sup ( 𝐴 , ℝ , < ) ) ) |
| 5 | simpl1 | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → 𝐴 ⊆ ℝ ) | |
| 6 | 5 | sselda | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ ℝ ) |
| 7 | simplr | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑤 ∈ 𝐴 ) → 𝐵 ∈ ℝ ) | |
| 8 | 6 7 | lenltd | ⊢ ( ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ≤ 𝐵 ↔ ¬ 𝐵 < 𝑤 ) ) |
| 9 | 8 | ralbidva | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( ∀ 𝑤 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∀ 𝑤 ∈ 𝐴 ¬ 𝐵 < 𝑤 ) ) |
| 10 | 1 4 9 | 3bitr4d | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑤 ∈ 𝐴 𝑤 ≤ 𝐵 ) ) |
| 11 | breq1 | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ≤ 𝐵 ↔ 𝑧 ≤ 𝐵 ) ) | |
| 12 | 11 | cbvralvw | ⊢ ( ∀ 𝑤 ∈ 𝐴 𝑤 ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝐵 ) |
| 13 | 10 12 | bitrdi | ⊢ ( ( ( 𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ∧ 𝐵 ∈ ℝ ) → ( sup ( 𝐴 , ℝ , < ) ≤ 𝐵 ↔ ∀ 𝑧 ∈ 𝐴 𝑧 ≤ 𝐵 ) ) |