This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change the domain of a measurability predicate. (Contributed by Mario Carneiro, 17-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mbfss.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| mbfss.2 | ⊢ ( 𝜑 → 𝐵 ∈ dom vol ) | ||
| mbfss.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | ||
| mbfss.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 0 ) | ||
| mbfss.5 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) | ||
| Assertion | mbfss | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mbfss.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | mbfss.2 | ⊢ ( 𝜑 → 𝐵 ∈ dom vol ) | |
| 3 | mbfss.3 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ 𝑉 ) | |
| 4 | mbfss.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 = 0 ) | |
| 5 | mbfss.5 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ) | |
| 6 | elun | ⊢ ( 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) ) | |
| 7 | undif2 | ⊢ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = ( 𝐴 ∪ 𝐵 ) | |
| 8 | ssequn1 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ 𝐵 ) = 𝐵 ) | |
| 9 | 1 8 | sylib | ⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) = 𝐵 ) |
| 10 | 7 9 | eqtrid | ⊢ ( 𝜑 → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
| 11 | 10 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 12 | 6 11 | bitr3id | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) ↔ 𝑥 ∈ 𝐵 ) ) |
| 13 | 12 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) ) |
| 14 | 5 3 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐶 ∈ ℂ ) |
| 15 | 0cn | ⊢ 0 ∈ ℂ | |
| 16 | 4 15 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
| 17 | 14 16 | jaodan | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∨ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) ) → 𝐶 ∈ ℂ ) |
| 18 | 13 17 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ ℂ ) |
| 19 | 18 | recld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℜ ‘ 𝐶 ) ∈ ℝ ) |
| 20 | 19 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) : 𝐵 ⟶ ℝ ) |
| 21 | 1 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ) |
| 22 | 14 | ismbfcn2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐶 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) ) ) |
| 23 | 5 22 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) ) |
| 24 | 23 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ) |
| 25 | 21 24 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ↾ 𝐴 ) ∈ MblFn ) |
| 26 | difss | ⊢ ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 | |
| 27 | resmpt | ⊢ ( ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ ( ℜ ‘ 𝐶 ) ) ) | |
| 28 | 26 27 | ax-mp | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ ( ℜ ‘ 𝐶 ) ) |
| 29 | 4 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ℜ ‘ 𝐶 ) = ( ℜ ‘ 0 ) ) |
| 30 | re0 | ⊢ ( ℜ ‘ 0 ) = 0 | |
| 31 | 29 30 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ℜ ‘ 𝐶 ) = 0 ) |
| 32 | 31 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ ( ℜ ‘ 𝐶 ) ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 0 ) ) |
| 33 | 28 32 | eqtrid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 0 ) ) |
| 34 | fconstmpt | ⊢ ( ( 𝐵 ∖ 𝐴 ) × { 0 } ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 0 ) | |
| 35 | 5 3 | mbfdm2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 36 | difmbl | ⊢ ( ( 𝐵 ∈ dom vol ∧ 𝐴 ∈ dom vol ) → ( 𝐵 ∖ 𝐴 ) ∈ dom vol ) | |
| 37 | 2 35 36 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ∖ 𝐴 ) ∈ dom vol ) |
| 38 | mbfconst | ⊢ ( ( ( 𝐵 ∖ 𝐴 ) ∈ dom vol ∧ 0 ∈ ℂ ) → ( ( 𝐵 ∖ 𝐴 ) × { 0 } ) ∈ MblFn ) | |
| 39 | 37 15 38 | sylancl | ⊢ ( 𝜑 → ( ( 𝐵 ∖ 𝐴 ) × { 0 } ) ∈ MblFn ) |
| 40 | 34 39 | eqeltrrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 0 ) ∈ MblFn ) |
| 41 | 33 40 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ↾ ( 𝐵 ∖ 𝐴 ) ) ∈ MblFn ) |
| 42 | 20 25 41 10 | mbfres2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ) |
| 43 | 18 | imcld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → ( ℑ ‘ 𝐶 ) ∈ ℝ ) |
| 44 | 43 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) : 𝐵 ⟶ ℝ ) |
| 45 | 1 | resmptd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ↾ 𝐴 ) = ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ) |
| 46 | 23 | simprd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) |
| 47 | 45 46 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ↾ 𝐴 ) ∈ MblFn ) |
| 48 | resmpt | ⊢ ( ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ ( ℑ ‘ 𝐶 ) ) ) | |
| 49 | 26 48 | ax-mp | ⊢ ( ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ ( ℑ ‘ 𝐶 ) ) |
| 50 | 4 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ℑ ‘ 𝐶 ) = ( ℑ ‘ 0 ) ) |
| 51 | im0 | ⊢ ( ℑ ‘ 0 ) = 0 | |
| 52 | 50 51 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ) → ( ℑ ‘ 𝐶 ) = 0 ) |
| 53 | 52 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ ( ℑ ‘ 𝐶 ) ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 0 ) ) |
| 54 | 49 53 | eqtrid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ↾ ( 𝐵 ∖ 𝐴 ) ) = ( 𝑥 ∈ ( 𝐵 ∖ 𝐴 ) ↦ 0 ) ) |
| 55 | 54 40 | eqeltrd | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ↾ ( 𝐵 ∖ 𝐴 ) ) ∈ MblFn ) |
| 56 | 44 47 55 10 | mbfres2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) |
| 57 | 18 | ismbfcn2 | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ↔ ( ( 𝑥 ∈ 𝐵 ↦ ( ℜ ‘ 𝐶 ) ) ∈ MblFn ∧ ( 𝑥 ∈ 𝐵 ↦ ( ℑ ‘ 𝐶 ) ) ∈ MblFn ) ) ) |
| 58 | 42 56 57 | mpbir2and | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) ∈ MblFn ) |