This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The restriction of a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mbfres | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( 𝐹 ↾ 𝐴 ) ∈ MblFn ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ref | ⊢ ℜ : ℂ ⟶ ℝ | |
| 2 | simpr | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → 𝐴 ∈ dom vol ) | |
| 3 | ismbf1 | ⊢ ( 𝐹 ∈ MblFn ↔ ( 𝐹 ∈ ( ℂ ↑pm ℝ ) ∧ ∀ 𝑥 ∈ ran (,) ( ( ◡ ( ℜ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ∧ ( ◡ ( ℑ ∘ 𝐹 ) “ 𝑥 ) ∈ dom vol ) ) ) | |
| 4 | 3 | simplbi | ⊢ ( 𝐹 ∈ MblFn → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → 𝐹 ∈ ( ℂ ↑pm ℝ ) ) |
| 6 | pmresg | ⊢ ( ( 𝐴 ∈ dom vol ∧ 𝐹 ∈ ( ℂ ↑pm ℝ ) ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ℂ ↑pm 𝐴 ) ) | |
| 7 | 2 5 6 | syl2anc | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( 𝐹 ↾ 𝐴 ) ∈ ( ℂ ↑pm 𝐴 ) ) |
| 8 | cnex | ⊢ ℂ ∈ V | |
| 9 | elpm2g | ⊢ ( ( ℂ ∈ V ∧ 𝐴 ∈ dom vol ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ℂ ↑pm 𝐴 ) ↔ ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ∧ dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 ) ) ) | |
| 10 | 8 2 9 | sylancr | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( 𝐹 ↾ 𝐴 ) ∈ ( ℂ ↑pm 𝐴 ) ↔ ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ∧ dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 ) ) ) |
| 11 | 7 10 | mpbid | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ∧ dom ( 𝐹 ↾ 𝐴 ) ⊆ 𝐴 ) ) |
| 12 | 11 | simpld | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ) |
| 13 | fco | ⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ) → ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℝ ) | |
| 14 | 1 12 13 | sylancr | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℝ ) |
| 15 | dmres | ⊢ dom ( 𝐹 ↾ 𝐴 ) = ( 𝐴 ∩ dom 𝐹 ) | |
| 16 | id | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ∈ dom vol ) | |
| 17 | mbfdm | ⊢ ( 𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol ) | |
| 18 | inmbl | ⊢ ( ( 𝐴 ∈ dom vol ∧ dom 𝐹 ∈ dom vol ) → ( 𝐴 ∩ dom 𝐹 ) ∈ dom vol ) | |
| 19 | 16 17 18 | syl2anr | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( 𝐴 ∩ dom 𝐹 ) ∈ dom vol ) |
| 20 | 15 19 | eqeltrid | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → dom ( 𝐹 ↾ 𝐴 ) ∈ dom vol ) |
| 21 | resco | ⊢ ( ( ℜ ∘ 𝐹 ) ↾ 𝐴 ) = ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) | |
| 22 | 21 | cnveqi | ⊢ ◡ ( ( ℜ ∘ 𝐹 ) ↾ 𝐴 ) = ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) |
| 23 | 22 | imaeq1i | ⊢ ( ◡ ( ( ℜ ∘ 𝐹 ) ↾ 𝐴 ) “ ( 𝑥 (,) +∞ ) ) = ( ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( 𝑥 (,) +∞ ) ) |
| 24 | cnvresima | ⊢ ( ◡ ( ( ℜ ∘ 𝐹 ) ↾ 𝐴 ) “ ( 𝑥 (,) +∞ ) ) = ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∩ 𝐴 ) | |
| 25 | 23 24 | eqtr3i | ⊢ ( ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( 𝑥 (,) +∞ ) ) = ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∩ 𝐴 ) |
| 26 | mbff | ⊢ ( 𝐹 ∈ MblFn → 𝐹 : dom 𝐹 ⟶ ℂ ) | |
| 27 | ismbfcn | ⊢ ( 𝐹 : dom 𝐹 ⟶ ℂ → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) | |
| 28 | 26 27 | syl | ⊢ ( 𝐹 ∈ MblFn → ( 𝐹 ∈ MblFn ↔ ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) ) |
| 29 | 28 | ibi | ⊢ ( 𝐹 ∈ MblFn → ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) ∈ MblFn ) ) |
| 30 | 29 | simpld | ⊢ ( 𝐹 ∈ MblFn → ( ℜ ∘ 𝐹 ) ∈ MblFn ) |
| 31 | fco | ⊢ ( ( ℜ : ℂ ⟶ ℝ ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) | |
| 32 | 1 26 31 | sylancr | ⊢ ( 𝐹 ∈ MblFn → ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) |
| 33 | mbfima | ⊢ ( ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) → ( ◡ ( ℜ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) | |
| 34 | 30 32 33 | syl2anc | ⊢ ( 𝐹 ∈ MblFn → ( ◡ ( ℜ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 35 | inmbl | ⊢ ( ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∩ 𝐴 ) ∈ dom vol ) | |
| 36 | 34 35 | sylan | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∩ 𝐴 ) ∈ dom vol ) |
| 37 | 25 36 | eqeltrid | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 38 | 37 | adantr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → ( ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 39 | 22 | imaeq1i | ⊢ ( ◡ ( ( ℜ ∘ 𝐹 ) ↾ 𝐴 ) “ ( -∞ (,) 𝑥 ) ) = ( ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( -∞ (,) 𝑥 ) ) |
| 40 | cnvresima | ⊢ ( ◡ ( ( ℜ ∘ 𝐹 ) ↾ 𝐴 ) “ ( -∞ (,) 𝑥 ) ) = ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∩ 𝐴 ) | |
| 41 | 39 40 | eqtr3i | ⊢ ( ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( -∞ (,) 𝑥 ) ) = ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∩ 𝐴 ) |
| 42 | mbfima | ⊢ ( ( ( ℜ ∘ 𝐹 ) ∈ MblFn ∧ ( ℜ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) → ( ◡ ( ℜ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) | |
| 43 | 30 32 42 | syl2anc | ⊢ ( 𝐹 ∈ MblFn → ( ◡ ( ℜ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 44 | inmbl | ⊢ ( ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∩ 𝐴 ) ∈ dom vol ) | |
| 45 | 43 44 | sylan | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℜ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∩ 𝐴 ) ∈ dom vol ) |
| 46 | 41 45 | eqeltrid | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 47 | 46 | adantr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → ( ◡ ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 48 | 14 20 38 47 | ismbf2d | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) ∈ MblFn ) |
| 49 | imf | ⊢ ℑ : ℂ ⟶ ℝ | |
| 50 | fco | ⊢ ( ( ℑ : ℂ ⟶ ℝ ∧ ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ) → ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℝ ) | |
| 51 | 49 12 50 | sylancr | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℝ ) |
| 52 | resco | ⊢ ( ( ℑ ∘ 𝐹 ) ↾ 𝐴 ) = ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) | |
| 53 | 52 | cnveqi | ⊢ ◡ ( ( ℑ ∘ 𝐹 ) ↾ 𝐴 ) = ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) |
| 54 | 53 | imaeq1i | ⊢ ( ◡ ( ( ℑ ∘ 𝐹 ) ↾ 𝐴 ) “ ( 𝑥 (,) +∞ ) ) = ( ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( 𝑥 (,) +∞ ) ) |
| 55 | cnvresima | ⊢ ( ◡ ( ( ℑ ∘ 𝐹 ) ↾ 𝐴 ) “ ( 𝑥 (,) +∞ ) ) = ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∩ 𝐴 ) | |
| 56 | 54 55 | eqtr3i | ⊢ ( ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( 𝑥 (,) +∞ ) ) = ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∩ 𝐴 ) |
| 57 | 29 | simprd | ⊢ ( 𝐹 ∈ MblFn → ( ℑ ∘ 𝐹 ) ∈ MblFn ) |
| 58 | fco | ⊢ ( ( ℑ : ℂ ⟶ ℝ ∧ 𝐹 : dom 𝐹 ⟶ ℂ ) → ( ℑ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) | |
| 59 | 49 26 58 | sylancr | ⊢ ( 𝐹 ∈ MblFn → ( ℑ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) |
| 60 | mbfima | ⊢ ( ( ( ℑ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) → ( ◡ ( ℑ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) | |
| 61 | 57 59 60 | syl2anc | ⊢ ( 𝐹 ∈ MblFn → ( ◡ ( ℑ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 62 | inmbl | ⊢ ( ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∩ 𝐴 ) ∈ dom vol ) | |
| 63 | 61 62 | sylan | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( 𝑥 (,) +∞ ) ) ∩ 𝐴 ) ∈ dom vol ) |
| 64 | 56 63 | eqeltrid | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 65 | 64 | adantr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → ( ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( 𝑥 (,) +∞ ) ) ∈ dom vol ) |
| 66 | 53 | imaeq1i | ⊢ ( ◡ ( ( ℑ ∘ 𝐹 ) ↾ 𝐴 ) “ ( -∞ (,) 𝑥 ) ) = ( ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( -∞ (,) 𝑥 ) ) |
| 67 | cnvresima | ⊢ ( ◡ ( ( ℑ ∘ 𝐹 ) ↾ 𝐴 ) “ ( -∞ (,) 𝑥 ) ) = ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∩ 𝐴 ) | |
| 68 | 66 67 | eqtr3i | ⊢ ( ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( -∞ (,) 𝑥 ) ) = ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∩ 𝐴 ) |
| 69 | mbfima | ⊢ ( ( ( ℑ ∘ 𝐹 ) ∈ MblFn ∧ ( ℑ ∘ 𝐹 ) : dom 𝐹 ⟶ ℝ ) → ( ◡ ( ℑ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) | |
| 70 | 57 59 69 | syl2anc | ⊢ ( 𝐹 ∈ MblFn → ( ◡ ( ℑ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 71 | inmbl | ⊢ ( ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∩ 𝐴 ) ∈ dom vol ) | |
| 72 | 70 71 | sylan | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( ◡ ( ℑ ∘ 𝐹 ) “ ( -∞ (,) 𝑥 ) ) ∩ 𝐴 ) ∈ dom vol ) |
| 73 | 68 72 | eqeltrid | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 74 | 73 | adantr | ⊢ ( ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) ∧ 𝑥 ∈ ℝ ) → ( ◡ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) “ ( -∞ (,) 𝑥 ) ) ∈ dom vol ) |
| 75 | 51 20 65 74 | ismbf2d | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) ∈ MblFn ) |
| 76 | ismbfcn | ⊢ ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ → ( ( 𝐹 ↾ 𝐴 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) ∈ MblFn ) ) ) | |
| 77 | 12 76 | syl | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( ( 𝐹 ↾ 𝐴 ) ∈ MblFn ↔ ( ( ℜ ∘ ( 𝐹 ↾ 𝐴 ) ) ∈ MblFn ∧ ( ℑ ∘ ( 𝐹 ↾ 𝐴 ) ) ∈ MblFn ) ) ) |
| 78 | 48 75 77 | mpbir2and | ⊢ ( ( 𝐹 ∈ MblFn ∧ 𝐴 ∈ dom vol ) → ( 𝐹 ↾ 𝐴 ) ∈ MblFn ) |