This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Transfer itg2cn to the full Lebesgue integral. (Contributed by Mario Carneiro, 1-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | itgcn.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| itgcn.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | ||
| itgcn.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | ||
| Assertion | itgcn | ⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐴 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgcn.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | itgcn.2 | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 ) | |
| 3 | itgcn.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) | |
| 4 | iblmbf | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ 𝐿1 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) | |
| 5 | 2 4 | syl | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ MblFn ) |
| 6 | 5 1 | mbfmptcl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 7 | 6 | abscld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 8 | 6 | absge0d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 9 | elrege0 | ⊢ ( ( abs ‘ 𝐵 ) ∈ ( 0 [,) +∞ ) ↔ ( ( abs ‘ 𝐵 ) ∈ ℝ ∧ 0 ≤ ( abs ‘ 𝐵 ) ) ) | |
| 10 | 7 8 9 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ( 0 [,) +∞ ) ) |
| 11 | 0e0icopnf | ⊢ 0 ∈ ( 0 [,) +∞ ) | |
| 12 | 11 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝑥 ∈ 𝐴 ) → 0 ∈ ( 0 [,) +∞ ) ) |
| 13 | 10 12 | ifclda | ⊢ ( 𝜑 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 15 | 14 | fmpttd | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) : ℝ ⟶ ( 0 [,) +∞ ) ) |
| 16 | 5 1 | mbfdm2 | ⊢ ( 𝜑 → 𝐴 ∈ dom vol ) |
| 17 | mblss | ⊢ ( 𝐴 ∈ dom vol → 𝐴 ⊆ ℝ ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
| 19 | rembl | ⊢ ℝ ∈ dom vol | |
| 20 | 19 | a1i | ⊢ ( 𝜑 → ℝ ∈ dom vol ) |
| 21 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ ( 0 [,) +∞ ) ) |
| 22 | eldifn | ⊢ ( 𝑥 ∈ ( ℝ ∖ 𝐴 ) → ¬ 𝑥 ∈ 𝐴 ) | |
| 23 | 22 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → ¬ 𝑥 ∈ 𝐴 ) |
| 24 | 23 | iffalsed | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℝ ∖ 𝐴 ) ) → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) = 0 ) |
| 25 | iftrue | ⊢ ( 𝑥 ∈ 𝐴 → if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) = ( abs ‘ 𝐵 ) ) | |
| 26 | 25 | mpteq2ia | ⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) |
| 27 | 1 2 | iblabs | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 28 | 7 8 | iblpos | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ↔ ( ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) ) |
| 29 | 27 28 | mpbid | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ MblFn ∧ ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) ) |
| 30 | 29 | simpld | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ MblFn ) |
| 31 | 26 30 | eqeltrid | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ∈ MblFn ) |
| 32 | 18 20 21 24 31 | mbfss | ⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ∈ MblFn ) |
| 33 | 29 | simprd | ⊢ ( 𝜑 → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ) ∈ ℝ ) |
| 34 | 15 32 33 3 | itg2cn | ⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) ) |
| 35 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → 𝑢 ⊆ 𝐴 ) | |
| 36 | 35 | sselda | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) ∧ 𝑥 ∈ 𝑢 ) → 𝑥 ∈ 𝐴 ) |
| 37 | 6 | adantlr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) |
| 38 | 36 37 | syldan | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) ∧ 𝑥 ∈ 𝑢 ) → 𝐵 ∈ ℂ ) |
| 39 | 38 | abscld | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) ∧ 𝑥 ∈ 𝑢 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 40 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → 𝑢 ∈ dom vol ) | |
| 41 | 37 | abscld | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) ∧ 𝑥 ∈ 𝐴 ) → ( abs ‘ 𝐵 ) ∈ ℝ ) |
| 42 | 27 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( 𝑥 ∈ 𝐴 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 43 | 35 40 41 42 | iblss | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( 𝑥 ∈ 𝑢 ↦ ( abs ‘ 𝐵 ) ) ∈ 𝐿1 ) |
| 44 | 38 | absge0d | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) ∧ 𝑥 ∈ 𝑢 ) → 0 ≤ ( abs ‘ 𝐵 ) ) |
| 45 | 39 43 44 | itgposval | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( abs ‘ 𝐵 ) , 0 ) ) ) ) |
| 46 | 35 | sseld | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( 𝑥 ∈ 𝑢 → 𝑥 ∈ 𝐴 ) ) |
| 47 | 46 | pm4.71d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( 𝑥 ∈ 𝑢 ↔ ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝐴 ) ) ) |
| 48 | 47 | ifbid | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → if ( 𝑥 ∈ 𝑢 , ( abs ‘ 𝐵 ) , 0 ) = if ( ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝐴 ) , ( abs ‘ 𝐵 ) , 0 ) ) |
| 49 | ifan | ⊢ if ( ( 𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝐴 ) , ( abs ‘ 𝐵 ) , 0 ) = if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) | |
| 50 | 48 49 | eqtrdi | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → if ( 𝑥 ∈ 𝑢 , ( abs ‘ 𝐵 ) , 0 ) = if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) ) |
| 51 | 50 | mpteq2dv | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( abs ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) ) ) |
| 52 | 51 | fveq2d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( abs ‘ 𝐵 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) ) ) ) |
| 53 | 45 52 | eqtrd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) ) ) ) |
| 54 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝑢 | |
| 55 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) | |
| 56 | nfcv | ⊢ Ⅎ 𝑥 0 | |
| 57 | 54 55 56 | nfif | ⊢ Ⅎ 𝑥 if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) |
| 58 | nfcv | ⊢ Ⅎ 𝑦 if ( 𝑥 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑥 ) , 0 ) | |
| 59 | elequ1 | ⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∈ 𝑢 ↔ 𝑥 ∈ 𝑢 ) ) | |
| 60 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) = ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑥 ) ) | |
| 61 | 59 60 | ifbieq1d | ⊢ ( 𝑦 = 𝑥 → if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) = if ( 𝑥 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑥 ) , 0 ) ) |
| 62 | 57 58 61 | cbvmpt | ⊢ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑥 ) , 0 ) ) |
| 63 | fvex | ⊢ ( abs ‘ 𝐵 ) ∈ V | |
| 64 | c0ex | ⊢ 0 ∈ V | |
| 65 | 63 64 | ifex | ⊢ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ V |
| 66 | eqid | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) | |
| 67 | 66 | fvmpt2 | ⊢ ( ( 𝑥 ∈ ℝ ∧ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ∈ V ) → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) |
| 68 | 65 67 | mpan2 | ⊢ ( 𝑥 ∈ ℝ → ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑥 ) = if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) |
| 69 | 68 | ifeq1d | ⊢ ( 𝑥 ∈ ℝ → if ( 𝑥 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑥 ) , 0 ) = if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) ) |
| 70 | 69 | mpteq2ia | ⊢ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑥 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) ) |
| 71 | 62 70 | eqtri | ⊢ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) ) |
| 72 | 71 | fveq2i | ⊢ ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝑢 , if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) , 0 ) ) ) |
| 73 | 53 72 | eqtr4di | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 = ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) ) |
| 74 | 73 | breq1d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ↔ ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) ) |
| 75 | 74 | biimprd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) |
| 76 | 75 | imim2d | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ dom vol ∧ 𝑢 ⊆ 𝐴 ) ) → ( ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) → ( ( vol ‘ 𝑢 ) < 𝑑 → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) ) |
| 77 | 76 | expr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ dom vol ) → ( 𝑢 ⊆ 𝐴 → ( ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) → ( ( vol ‘ 𝑢 ) < 𝑑 → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) ) ) |
| 78 | 77 | com23 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ dom vol ) → ( ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) → ( 𝑢 ⊆ 𝐴 → ( ( vol ‘ 𝑢 ) < 𝑑 → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) ) ) |
| 79 | 78 | imp4a | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ dom vol ) → ( ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) → ( ( 𝑢 ⊆ 𝐴 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) ) |
| 80 | 79 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) → ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐴 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) ) |
| 81 | 80 | reximdv | ⊢ ( 𝜑 → ( ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( vol ‘ 𝑢 ) < 𝑑 → ( ∫2 ‘ ( 𝑦 ∈ ℝ ↦ if ( 𝑦 ∈ 𝑢 , ( ( 𝑥 ∈ ℝ ↦ if ( 𝑥 ∈ 𝐴 , ( abs ‘ 𝐵 ) , 0 ) ) ‘ 𝑦 ) , 0 ) ) ) < 𝐶 ) → ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐴 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) ) |
| 82 | 34 81 | mpd | ⊢ ( 𝜑 → ∃ 𝑑 ∈ ℝ+ ∀ 𝑢 ∈ dom vol ( ( 𝑢 ⊆ 𝐴 ∧ ( vol ‘ 𝑢 ) < 𝑑 ) → ∫ 𝑢 ( abs ‘ 𝐵 ) d 𝑥 < 𝐶 ) ) |