This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space built from a pre-Hilbert space with certain properties. The main theorem is ipcau . (Contributed by Mario Carneiro, 11-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| tcphcph.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| tcphcph.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| tcphcph.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | ||
| tcphcph.2 | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) | ||
| tcphcph.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| tcphcph.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ 𝐾 ) | ||
| tcphcph.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) | ||
| tcphcph.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| ipcau2.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | ||
| ipcau2.c | ⊢ 𝐶 = ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) | ||
| ipcau2.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
| ipcau2.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | ||
| Assertion | ipcau2 | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | ⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) | |
| 2 | tcphcph.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 3 | tcphcph.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | tcphcph.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | |
| 5 | tcphcph.2 | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) | |
| 6 | tcphcph.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 7 | tcphcph.3 | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐾 ∧ 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) → ( √ ‘ 𝑥 ) ∈ 𝐾 ) | |
| 8 | tcphcph.4 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑉 ) → 0 ≤ ( 𝑥 , 𝑥 ) ) | |
| 9 | tcphcph.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 10 | ipcau2.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 11 | ipcau2.c | ⊢ 𝐶 = ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) | |
| 12 | ipcau2.3 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
| 13 | ipcau2.4 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) | |
| 14 | oveq2 | ⊢ ( 𝑌 = ( 0g ‘ 𝑊 ) → ( 𝑋 , 𝑌 ) = ( 𝑋 , ( 0g ‘ 𝑊 ) ) ) | |
| 15 | 14 | oveq1d | ⊢ ( 𝑌 = ( 0g ‘ 𝑊 ) → ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) = ( ( 𝑋 , ( 0g ‘ 𝑊 ) ) · ( 𝑌 , 𝑋 ) ) ) |
| 16 | 15 | breq1d | ⊢ ( 𝑌 = ( 0g ‘ 𝑊 ) → ( ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) ≤ ( ( 𝑋 , 𝑋 ) · ( 𝑌 , 𝑌 ) ) ↔ ( ( 𝑋 , ( 0g ‘ 𝑊 ) ) · ( 𝑌 , 𝑋 ) ) ≤ ( ( 𝑋 , 𝑋 ) · ( 𝑌 , 𝑌 ) ) ) ) |
| 17 | 1 2 3 4 5 | phclm | ⊢ ( 𝜑 → 𝑊 ∈ ℂMod ) |
| 18 | 3 9 | clmsscn | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
| 19 | 17 18 | syl | ⊢ ( 𝜑 → 𝐾 ⊆ ℂ ) |
| 20 | 3 6 2 9 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑋 , 𝑌 ) ∈ 𝐾 ) |
| 21 | 4 12 13 20 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 , 𝑌 ) ∈ 𝐾 ) |
| 22 | 19 21 | sseldd | ⊢ ( 𝜑 → ( 𝑋 , 𝑌 ) ∈ ℂ ) |
| 23 | 22 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑋 , 𝑌 ) ∈ ℂ ) |
| 24 | 3 6 2 9 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑌 , 𝑋 ) ∈ 𝐾 ) |
| 25 | 4 13 12 24 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 , 𝑋 ) ∈ 𝐾 ) |
| 26 | 19 25 | sseldd | ⊢ ( 𝜑 → ( 𝑌 , 𝑋 ) ∈ ℂ ) |
| 27 | 26 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑌 , 𝑋 ) ∈ ℂ ) |
| 28 | 1 2 3 4 5 6 | tcphcphlem3 | ⊢ ( ( 𝜑 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑌 , 𝑌 ) ∈ ℝ ) |
| 29 | 13 28 | mpdan | ⊢ ( 𝜑 → ( 𝑌 , 𝑌 ) ∈ ℝ ) |
| 30 | 29 | recnd | ⊢ ( 𝜑 → ( 𝑌 , 𝑌 ) ∈ ℂ ) |
| 31 | 30 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑌 , 𝑌 ) ∈ ℂ ) |
| 32 | 3 | clm0 | ⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ 𝐹 ) ) |
| 33 | 17 32 | syl | ⊢ ( 𝜑 → 0 = ( 0g ‘ 𝐹 ) ) |
| 34 | 33 | eqeq2d | ⊢ ( 𝜑 → ( ( 𝑌 , 𝑌 ) = 0 ↔ ( 𝑌 , 𝑌 ) = ( 0g ‘ 𝐹 ) ) ) |
| 35 | eqid | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) | |
| 36 | eqid | ⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) | |
| 37 | 3 6 2 35 36 | ipeq0 | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑌 ∈ 𝑉 ) → ( ( 𝑌 , 𝑌 ) = ( 0g ‘ 𝐹 ) ↔ 𝑌 = ( 0g ‘ 𝑊 ) ) ) |
| 38 | 4 13 37 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑌 , 𝑌 ) = ( 0g ‘ 𝐹 ) ↔ 𝑌 = ( 0g ‘ 𝑊 ) ) ) |
| 39 | 34 38 | bitrd | ⊢ ( 𝜑 → ( ( 𝑌 , 𝑌 ) = 0 ↔ 𝑌 = ( 0g ‘ 𝑊 ) ) ) |
| 40 | 39 | necon3bid | ⊢ ( 𝜑 → ( ( 𝑌 , 𝑌 ) ≠ 0 ↔ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ) |
| 41 | 40 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑌 , 𝑌 ) ≠ 0 ) |
| 42 | 23 27 31 41 | divassd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) / ( 𝑌 , 𝑌 ) ) = ( ( 𝑋 , 𝑌 ) · ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) ) ) |
| 43 | 11 | oveq2i | ⊢ ( ( 𝑋 , 𝑌 ) · 𝐶 ) = ( ( 𝑋 , 𝑌 ) · ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) ) |
| 44 | 42 43 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) / ( 𝑌 , 𝑌 ) ) = ( ( 𝑋 , 𝑌 ) · 𝐶 ) ) |
| 45 | oveq12 | ⊢ ( ( 𝑥 = ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∧ 𝑥 = ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) → ( 𝑥 , 𝑥 ) = ( ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) , ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) ) | |
| 46 | 45 | anidms | ⊢ ( 𝑥 = ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) → ( 𝑥 , 𝑥 ) = ( ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) , ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) ) |
| 47 | 46 | breq2d | ⊢ ( 𝑥 = ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) → ( 0 ≤ ( 𝑥 , 𝑥 ) ↔ 0 ≤ ( ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) , ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) ) ) |
| 48 | 8 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑉 0 ≤ ( 𝑥 , 𝑥 ) ) |
| 49 | 48 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ∀ 𝑥 ∈ 𝑉 0 ≤ ( 𝑥 , 𝑥 ) ) |
| 50 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 51 | 4 50 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 52 | 51 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → 𝑊 ∈ LMod ) |
| 53 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → 𝑋 ∈ 𝑉 ) |
| 54 | 11 | fveq2i | ⊢ ( ∗ ‘ 𝐶 ) = ( ∗ ‘ ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) ) |
| 55 | 27 31 41 | cjdivd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ∗ ‘ ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) ) = ( ( ∗ ‘ ( 𝑌 , 𝑋 ) ) / ( ∗ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
| 56 | 54 55 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ∗ ‘ 𝐶 ) = ( ( ∗ ‘ ( 𝑌 , 𝑋 ) ) / ( ∗ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
| 57 | 5 | fveq2d | ⊢ ( 𝜑 → ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 58 | 9 | fvexi | ⊢ 𝐾 ∈ V |
| 59 | eqid | ⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) | |
| 60 | cnfldcj | ⊢ ∗ = ( *𝑟 ‘ ℂfld ) | |
| 61 | 59 60 | ressstarv | ⊢ ( 𝐾 ∈ V → ∗ = ( *𝑟 ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 62 | 58 61 | ax-mp | ⊢ ∗ = ( *𝑟 ‘ ( ℂfld ↾s 𝐾 ) ) |
| 63 | 57 62 | eqtr4di | ⊢ ( 𝜑 → ( *𝑟 ‘ 𝐹 ) = ∗ ) |
| 64 | 63 | fveq1d | ⊢ ( 𝜑 → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋 , 𝑌 ) ) = ( ∗ ‘ ( 𝑋 , 𝑌 ) ) ) |
| 65 | eqid | ⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) | |
| 66 | 3 6 2 65 | ipcj | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋 , 𝑌 ) ) = ( 𝑌 , 𝑋 ) ) |
| 67 | 4 12 13 66 | syl3anc | ⊢ ( 𝜑 → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 𝑋 , 𝑌 ) ) = ( 𝑌 , 𝑋 ) ) |
| 68 | 64 67 | eqtr3d | ⊢ ( 𝜑 → ( ∗ ‘ ( 𝑋 , 𝑌 ) ) = ( 𝑌 , 𝑋 ) ) |
| 69 | 68 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ∗ ‘ ( 𝑋 , 𝑌 ) ) = ( 𝑌 , 𝑋 ) ) |
| 70 | 69 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ∗ ‘ ( ∗ ‘ ( 𝑋 , 𝑌 ) ) ) = ( ∗ ‘ ( 𝑌 , 𝑋 ) ) ) |
| 71 | 23 | cjcjd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ∗ ‘ ( ∗ ‘ ( 𝑋 , 𝑌 ) ) ) = ( 𝑋 , 𝑌 ) ) |
| 72 | 70 71 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ∗ ‘ ( 𝑌 , 𝑋 ) ) = ( 𝑋 , 𝑌 ) ) |
| 73 | 29 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑌 , 𝑌 ) ∈ ℝ ) |
| 74 | 73 | cjred | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ∗ ‘ ( 𝑌 , 𝑌 ) ) = ( 𝑌 , 𝑌 ) ) |
| 75 | 72 74 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ∗ ‘ ( 𝑌 , 𝑋 ) ) / ( ∗ ‘ ( 𝑌 , 𝑌 ) ) ) = ( ( 𝑋 , 𝑌 ) / ( 𝑌 , 𝑌 ) ) ) |
| 76 | 23 31 41 | divrecd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑋 , 𝑌 ) / ( 𝑌 , 𝑌 ) ) = ( ( 𝑋 , 𝑌 ) · ( 1 / ( 𝑌 , 𝑌 ) ) ) ) |
| 77 | 56 75 76 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ∗ ‘ 𝐶 ) = ( ( 𝑋 , 𝑌 ) · ( 1 / ( 𝑌 , 𝑌 ) ) ) ) |
| 78 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → 𝑊 ∈ ℂMod ) |
| 79 | 21 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑋 , 𝑌 ) ∈ 𝐾 ) |
| 80 | 3 6 2 9 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑌 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑌 , 𝑌 ) ∈ 𝐾 ) |
| 81 | 4 13 13 80 | syl3anc | ⊢ ( 𝜑 → ( 𝑌 , 𝑌 ) ∈ 𝐾 ) |
| 82 | 81 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑌 , 𝑌 ) ∈ 𝐾 ) |
| 83 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 84 | phllvec | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LVec ) | |
| 85 | 4 84 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LVec ) |
| 86 | 3 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
| 87 | 85 86 | syl | ⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
| 88 | 87 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → 𝐹 ∈ DivRing ) |
| 89 | 9 83 88 | cphreccllem | ⊢ ( ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) ∧ ( 𝑌 , 𝑌 ) ∈ 𝐾 ∧ ( 𝑌 , 𝑌 ) ≠ 0 ) → ( 1 / ( 𝑌 , 𝑌 ) ) ∈ 𝐾 ) |
| 90 | 82 41 89 | mpd3an23 | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 1 / ( 𝑌 , 𝑌 ) ) ∈ 𝐾 ) |
| 91 | 3 9 | clmmcl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑋 , 𝑌 ) ∈ 𝐾 ∧ ( 1 / ( 𝑌 , 𝑌 ) ) ∈ 𝐾 ) → ( ( 𝑋 , 𝑌 ) · ( 1 / ( 𝑌 , 𝑌 ) ) ) ∈ 𝐾 ) |
| 92 | 78 79 90 91 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑋 , 𝑌 ) · ( 1 / ( 𝑌 , 𝑌 ) ) ) ∈ 𝐾 ) |
| 93 | 77 92 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ∗ ‘ 𝐶 ) ∈ 𝐾 ) |
| 94 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → 𝑌 ∈ 𝑉 ) |
| 95 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 96 | 2 3 95 9 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ ( ∗ ‘ 𝐶 ) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
| 97 | 52 93 94 96 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) |
| 98 | eqid | ⊢ ( -g ‘ 𝑊 ) = ( -g ‘ 𝑊 ) | |
| 99 | 2 98 | lmodvsubcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉 ∧ ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) → ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ 𝑉 ) |
| 100 | 52 53 97 99 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ∈ 𝑉 ) |
| 101 | 47 49 100 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → 0 ≤ ( ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) , ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) ) |
| 102 | eqid | ⊢ ( -g ‘ 𝐹 ) = ( -g ‘ 𝐹 ) | |
| 103 | eqid | ⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) | |
| 104 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → 𝑊 ∈ PreHil ) |
| 105 | 3 6 2 98 102 103 104 53 97 53 97 | ip2subdi | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) , ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) = ( ( ( 𝑋 , 𝑋 ) ( +g ‘ 𝐹 ) ( ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) , ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) ( -g ‘ 𝐹 ) ( ( 𝑋 , ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ( +g ‘ 𝐹 ) ( ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) , 𝑋 ) ) ) ) |
| 106 | 83 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( +g ‘ 𝐹 ) = ( +g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 107 | cnfldadd | ⊢ + = ( +g ‘ ℂfld ) | |
| 108 | 59 107 | ressplusg | ⊢ ( 𝐾 ∈ V → + = ( +g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 109 | 58 108 | ax-mp | ⊢ + = ( +g ‘ ( ℂfld ↾s 𝐾 ) ) |
| 110 | 106 109 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( +g ‘ 𝐹 ) = + ) |
| 111 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑋 , 𝑋 ) = ( 𝑋 , 𝑋 ) ) | |
| 112 | eqid | ⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) | |
| 113 | 3 6 2 9 95 112 | ipass | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( ( ∗ ‘ 𝐶 ) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ∈ 𝑉 ) ) → ( ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) , ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = ( ( ∗ ‘ 𝐶 ) ( .r ‘ 𝐹 ) ( 𝑌 , ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) ) |
| 114 | 104 93 94 97 113 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) , ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = ( ( ∗ ‘ 𝐶 ) ( .r ‘ 𝐹 ) ( 𝑌 , ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) ) |
| 115 | 83 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( .r ‘ 𝐹 ) = ( .r ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 116 | cnfldmul | ⊢ · = ( .r ‘ ℂfld ) | |
| 117 | 59 116 | ressmulr | ⊢ ( 𝐾 ∈ V → · = ( .r ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 118 | 58 117 | ax-mp | ⊢ · = ( .r ‘ ( ℂfld ↾s 𝐾 ) ) |
| 119 | 115 118 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( .r ‘ 𝐹 ) = · ) |
| 120 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ∗ ‘ 𝐶 ) = ( ∗ ‘ 𝐶 ) ) | |
| 121 | 27 31 41 | divrecd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) = ( ( 𝑌 , 𝑋 ) · ( 1 / ( 𝑌 , 𝑌 ) ) ) ) |
| 122 | 11 121 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → 𝐶 = ( ( 𝑌 , 𝑋 ) · ( 1 / ( 𝑌 , 𝑌 ) ) ) ) |
| 123 | 25 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑌 , 𝑋 ) ∈ 𝐾 ) |
| 124 | 3 9 | clmmcl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑌 , 𝑋 ) ∈ 𝐾 ∧ ( 1 / ( 𝑌 , 𝑌 ) ) ∈ 𝐾 ) → ( ( 𝑌 , 𝑋 ) · ( 1 / ( 𝑌 , 𝑌 ) ) ) ∈ 𝐾 ) |
| 125 | 78 123 90 124 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑌 , 𝑋 ) · ( 1 / ( 𝑌 , 𝑌 ) ) ) ∈ 𝐾 ) |
| 126 | 122 125 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → 𝐶 ∈ 𝐾 ) |
| 127 | 3 6 2 9 95 112 65 | ipassr2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝑌 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ( 𝑌 , 𝑌 ) ( .r ‘ 𝐹 ) 𝐶 ) = ( 𝑌 , ( ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 128 | 104 94 94 126 127 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑌 , 𝑌 ) ( .r ‘ 𝐹 ) 𝐶 ) = ( 𝑌 , ( ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 129 | 119 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑌 , 𝑌 ) ( .r ‘ 𝐹 ) 𝐶 ) = ( ( 𝑌 , 𝑌 ) · 𝐶 ) ) |
| 130 | 11 | oveq2i | ⊢ ( ( 𝑌 , 𝑌 ) · 𝐶 ) = ( ( 𝑌 , 𝑌 ) · ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) ) |
| 131 | 27 31 41 | divcan2d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑌 , 𝑌 ) · ( ( 𝑌 , 𝑋 ) / ( 𝑌 , 𝑌 ) ) ) = ( 𝑌 , 𝑋 ) ) |
| 132 | 130 131 | eqtrid | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑌 , 𝑌 ) · 𝐶 ) = ( 𝑌 , 𝑋 ) ) |
| 133 | 129 132 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑌 , 𝑌 ) ( .r ‘ 𝐹 ) 𝐶 ) = ( 𝑌 , 𝑋 ) ) |
| 134 | 63 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( *𝑟 ‘ 𝐹 ) = ∗ ) |
| 135 | 134 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐶 ) = ( ∗ ‘ 𝐶 ) ) |
| 136 | 135 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) = ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) |
| 137 | 136 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑌 , ( ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = ( 𝑌 , ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 138 | 128 133 137 | 3eqtr3rd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑌 , ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = ( 𝑌 , 𝑋 ) ) |
| 139 | 119 120 138 | oveq123d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ∗ ‘ 𝐶 ) ( .r ‘ 𝐹 ) ( 𝑌 , ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) |
| 140 | 114 139 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) , ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) |
| 141 | 110 111 140 | oveq123d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑋 , 𝑋 ) ( +g ‘ 𝐹 ) ( ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) , ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) = ( ( 𝑋 , 𝑋 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ) |
| 142 | 3 6 2 9 95 112 65 | ipassr2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ( 𝑋 , 𝑌 ) ( .r ‘ 𝐹 ) 𝐶 ) = ( 𝑋 , ( ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 143 | 104 53 94 126 142 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑋 , 𝑌 ) ( .r ‘ 𝐹 ) 𝐶 ) = ( 𝑋 , ( ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 144 | 119 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑋 , 𝑌 ) ( .r ‘ 𝐹 ) 𝐶 ) = ( ( 𝑋 , 𝑌 ) · 𝐶 ) ) |
| 145 | 136 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑋 , ( ( ( *𝑟 ‘ 𝐹 ) ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = ( 𝑋 , ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) |
| 146 | 143 144 145 | 3eqtr3rd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑋 , ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) = ( ( 𝑋 , 𝑌 ) · 𝐶 ) ) |
| 147 | 3 6 2 9 95 112 | ipass | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( ( ∗ ‘ 𝐶 ) ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) , 𝑋 ) = ( ( ∗ ‘ 𝐶 ) ( .r ‘ 𝐹 ) ( 𝑌 , 𝑋 ) ) ) |
| 148 | 104 93 94 53 147 | syl13anc | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) , 𝑋 ) = ( ( ∗ ‘ 𝐶 ) ( .r ‘ 𝐹 ) ( 𝑌 , 𝑋 ) ) ) |
| 149 | 119 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ∗ ‘ 𝐶 ) ( .r ‘ 𝐹 ) ( 𝑌 , 𝑋 ) ) = ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) |
| 150 | 148 149 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) , 𝑋 ) = ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) |
| 151 | 110 146 150 | oveq123d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑋 , ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ( +g ‘ 𝐹 ) ( ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) , 𝑋 ) ) = ( ( ( 𝑋 , 𝑌 ) · 𝐶 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ) |
| 152 | 141 151 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ( 𝑋 , 𝑋 ) ( +g ‘ 𝐹 ) ( ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) , ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) ( -g ‘ 𝐹 ) ( ( 𝑋 , ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ( +g ‘ 𝐹 ) ( ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) , 𝑋 ) ) ) = ( ( ( 𝑋 , 𝑋 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ( -g ‘ 𝐹 ) ( ( ( 𝑋 , 𝑌 ) · 𝐶 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ) ) |
| 153 | 3 6 2 9 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ 𝐾 ) |
| 154 | 104 53 53 153 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑋 , 𝑋 ) ∈ 𝐾 ) |
| 155 | 3 9 | clmmcl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( ∗ ‘ 𝐶 ) ∈ 𝐾 ∧ ( 𝑌 , 𝑋 ) ∈ 𝐾 ) → ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ∈ 𝐾 ) |
| 156 | 78 93 123 155 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ∈ 𝐾 ) |
| 157 | 3 9 | clmacl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑋 , 𝑋 ) ∈ 𝐾 ∧ ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ∈ 𝐾 ) → ( ( 𝑋 , 𝑋 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ∈ 𝐾 ) |
| 158 | 78 154 156 157 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑋 , 𝑋 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ∈ 𝐾 ) |
| 159 | 3 9 | clmmcl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝑋 , 𝑌 ) ∈ 𝐾 ∧ 𝐶 ∈ 𝐾 ) → ( ( 𝑋 , 𝑌 ) · 𝐶 ) ∈ 𝐾 ) |
| 160 | 78 79 126 159 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑋 , 𝑌 ) · 𝐶 ) ∈ 𝐾 ) |
| 161 | 3 9 | clmacl | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( ( 𝑋 , 𝑌 ) · 𝐶 ) ∈ 𝐾 ∧ ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ∈ 𝐾 ) → ( ( ( 𝑋 , 𝑌 ) · 𝐶 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ∈ 𝐾 ) |
| 162 | 78 160 156 161 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ( 𝑋 , 𝑌 ) · 𝐶 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ∈ 𝐾 ) |
| 163 | 3 9 | clmsub | ⊢ ( ( 𝑊 ∈ ℂMod ∧ ( ( 𝑋 , 𝑋 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ∈ 𝐾 ∧ ( ( ( 𝑋 , 𝑌 ) · 𝐶 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ∈ 𝐾 ) → ( ( ( 𝑋 , 𝑋 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) − ( ( ( 𝑋 , 𝑌 ) · 𝐶 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ) = ( ( ( 𝑋 , 𝑋 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ( -g ‘ 𝐹 ) ( ( ( 𝑋 , 𝑌 ) · 𝐶 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ) ) |
| 164 | 78 158 162 163 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ( 𝑋 , 𝑋 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) − ( ( ( 𝑋 , 𝑌 ) · 𝐶 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ) = ( ( ( 𝑋 , 𝑋 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ( -g ‘ 𝐹 ) ( ( ( 𝑋 , 𝑌 ) · 𝐶 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ) ) |
| 165 | 1 2 3 4 5 6 | tcphcphlem3 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , 𝑋 ) ∈ ℝ ) |
| 166 | 12 165 | mpdan | ⊢ ( 𝜑 → ( 𝑋 , 𝑋 ) ∈ ℝ ) |
| 167 | 166 | recnd | ⊢ ( 𝜑 → ( 𝑋 , 𝑋 ) ∈ ℂ ) |
| 168 | 167 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑋 , 𝑋 ) ∈ ℂ ) |
| 169 | 22 | absvalsqd | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 , 𝑌 ) ) ↑ 2 ) = ( ( 𝑋 , 𝑌 ) · ( ∗ ‘ ( 𝑋 , 𝑌 ) ) ) ) |
| 170 | 68 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑋 , 𝑌 ) · ( ∗ ‘ ( 𝑋 , 𝑌 ) ) ) = ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) ) |
| 171 | 169 170 | eqtrd | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 , 𝑌 ) ) ↑ 2 ) = ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) ) |
| 172 | 22 | abscld | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 , 𝑌 ) ) ∈ ℝ ) |
| 173 | 172 | resqcld | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 , 𝑌 ) ) ↑ 2 ) ∈ ℝ ) |
| 174 | 171 173 | eqeltrrd | ⊢ ( 𝜑 → ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) ∈ ℝ ) |
| 175 | 174 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) ∈ ℝ ) |
| 176 | 175 73 41 | redivcld | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) / ( 𝑌 , 𝑌 ) ) ∈ ℝ ) |
| 177 | 44 176 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑋 , 𝑌 ) · 𝐶 ) ∈ ℝ ) |
| 178 | 177 | recnd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑋 , 𝑌 ) · 𝐶 ) ∈ ℂ ) |
| 179 | 78 18 | syl | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → 𝐾 ⊆ ℂ ) |
| 180 | 179 156 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ∈ ℂ ) |
| 181 | 168 178 180 | pnpcan2d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ( 𝑋 , 𝑋 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) − ( ( ( 𝑋 , 𝑌 ) · 𝐶 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ) = ( ( 𝑋 , 𝑋 ) − ( ( 𝑋 , 𝑌 ) · 𝐶 ) ) ) |
| 182 | 164 181 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ( 𝑋 , 𝑋 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ( -g ‘ 𝐹 ) ( ( ( 𝑋 , 𝑌 ) · 𝐶 ) + ( ( ∗ ‘ 𝐶 ) · ( 𝑌 , 𝑋 ) ) ) ) = ( ( 𝑋 , 𝑋 ) − ( ( 𝑋 , 𝑌 ) · 𝐶 ) ) ) |
| 183 | 105 152 182 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) , ( 𝑋 ( -g ‘ 𝑊 ) ( ( ∗ ‘ 𝐶 ) ( ·𝑠 ‘ 𝑊 ) 𝑌 ) ) ) = ( ( 𝑋 , 𝑋 ) − ( ( 𝑋 , 𝑌 ) · 𝐶 ) ) ) |
| 184 | 101 183 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → 0 ≤ ( ( 𝑋 , 𝑋 ) − ( ( 𝑋 , 𝑌 ) · 𝐶 ) ) ) |
| 185 | 166 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 𝑋 , 𝑋 ) ∈ ℝ ) |
| 186 | 185 177 | subge0d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( 0 ≤ ( ( 𝑋 , 𝑋 ) − ( ( 𝑋 , 𝑌 ) · 𝐶 ) ) ↔ ( ( 𝑋 , 𝑌 ) · 𝐶 ) ≤ ( 𝑋 , 𝑋 ) ) ) |
| 187 | 184 186 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑋 , 𝑌 ) · 𝐶 ) ≤ ( 𝑋 , 𝑋 ) ) |
| 188 | 44 187 | eqbrtrd | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) / ( 𝑌 , 𝑌 ) ) ≤ ( 𝑋 , 𝑋 ) ) |
| 189 | oveq12 | ⊢ ( ( 𝑥 = 𝑌 ∧ 𝑥 = 𝑌 ) → ( 𝑥 , 𝑥 ) = ( 𝑌 , 𝑌 ) ) | |
| 190 | 189 | anidms | ⊢ ( 𝑥 = 𝑌 → ( 𝑥 , 𝑥 ) = ( 𝑌 , 𝑌 ) ) |
| 191 | 190 | breq2d | ⊢ ( 𝑥 = 𝑌 → ( 0 ≤ ( 𝑥 , 𝑥 ) ↔ 0 ≤ ( 𝑌 , 𝑌 ) ) ) |
| 192 | 191 48 13 | rspcdva | ⊢ ( 𝜑 → 0 ≤ ( 𝑌 , 𝑌 ) ) |
| 193 | 192 | adantr | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → 0 ≤ ( 𝑌 , 𝑌 ) ) |
| 194 | 73 193 41 | ne0gt0d | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → 0 < ( 𝑌 , 𝑌 ) ) |
| 195 | ledivmul2 | ⊢ ( ( ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) ∈ ℝ ∧ ( 𝑋 , 𝑋 ) ∈ ℝ ∧ ( ( 𝑌 , 𝑌 ) ∈ ℝ ∧ 0 < ( 𝑌 , 𝑌 ) ) ) → ( ( ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) / ( 𝑌 , 𝑌 ) ) ≤ ( 𝑋 , 𝑋 ) ↔ ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) ≤ ( ( 𝑋 , 𝑋 ) · ( 𝑌 , 𝑌 ) ) ) ) | |
| 196 | 175 185 73 194 195 | syl112anc | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) / ( 𝑌 , 𝑌 ) ) ≤ ( 𝑋 , 𝑋 ) ↔ ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) ≤ ( ( 𝑋 , 𝑋 ) · ( 𝑌 , 𝑌 ) ) ) ) |
| 197 | 188 196 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑌 ≠ ( 0g ‘ 𝑊 ) ) → ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) ≤ ( ( 𝑋 , 𝑋 ) · ( 𝑌 , 𝑌 ) ) ) |
| 198 | 3 6 2 35 36 | ip0r | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑋 ∈ 𝑉 ) → ( 𝑋 , ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝐹 ) ) |
| 199 | 4 12 198 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 , ( 0g ‘ 𝑊 ) ) = ( 0g ‘ 𝐹 ) ) |
| 200 | 199 33 | eqtr4d | ⊢ ( 𝜑 → ( 𝑋 , ( 0g ‘ 𝑊 ) ) = 0 ) |
| 201 | 200 | oveq1d | ⊢ ( 𝜑 → ( ( 𝑋 , ( 0g ‘ 𝑊 ) ) · ( 𝑌 , 𝑋 ) ) = ( 0 · ( 𝑌 , 𝑋 ) ) ) |
| 202 | 26 | mul02d | ⊢ ( 𝜑 → ( 0 · ( 𝑌 , 𝑋 ) ) = 0 ) |
| 203 | 201 202 | eqtrd | ⊢ ( 𝜑 → ( ( 𝑋 , ( 0g ‘ 𝑊 ) ) · ( 𝑌 , 𝑋 ) ) = 0 ) |
| 204 | oveq12 | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑥 = 𝑋 ) → ( 𝑥 , 𝑥 ) = ( 𝑋 , 𝑋 ) ) | |
| 205 | 204 | anidms | ⊢ ( 𝑥 = 𝑋 → ( 𝑥 , 𝑥 ) = ( 𝑋 , 𝑋 ) ) |
| 206 | 205 | breq2d | ⊢ ( 𝑥 = 𝑋 → ( 0 ≤ ( 𝑥 , 𝑥 ) ↔ 0 ≤ ( 𝑋 , 𝑋 ) ) ) |
| 207 | 206 48 12 | rspcdva | ⊢ ( 𝜑 → 0 ≤ ( 𝑋 , 𝑋 ) ) |
| 208 | 166 29 207 192 | mulge0d | ⊢ ( 𝜑 → 0 ≤ ( ( 𝑋 , 𝑋 ) · ( 𝑌 , 𝑌 ) ) ) |
| 209 | 203 208 | eqbrtrd | ⊢ ( 𝜑 → ( ( 𝑋 , ( 0g ‘ 𝑊 ) ) · ( 𝑌 , 𝑋 ) ) ≤ ( ( 𝑋 , 𝑋 ) · ( 𝑌 , 𝑌 ) ) ) |
| 210 | 16 197 209 | pm2.61ne | ⊢ ( 𝜑 → ( ( 𝑋 , 𝑌 ) · ( 𝑌 , 𝑋 ) ) ≤ ( ( 𝑋 , 𝑋 ) · ( 𝑌 , 𝑌 ) ) ) |
| 211 | 166 207 | resqrtcld | ⊢ ( 𝜑 → ( √ ‘ ( 𝑋 , 𝑋 ) ) ∈ ℝ ) |
| 212 | 211 | recnd | ⊢ ( 𝜑 → ( √ ‘ ( 𝑋 , 𝑋 ) ) ∈ ℂ ) |
| 213 | 29 192 | resqrtcld | ⊢ ( 𝜑 → ( √ ‘ ( 𝑌 , 𝑌 ) ) ∈ ℝ ) |
| 214 | 213 | recnd | ⊢ ( 𝜑 → ( √ ‘ ( 𝑌 , 𝑌 ) ) ∈ ℂ ) |
| 215 | 212 214 | sqmuld | ⊢ ( 𝜑 → ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↑ 2 ) = ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) ↑ 2 ) · ( ( √ ‘ ( 𝑌 , 𝑌 ) ) ↑ 2 ) ) ) |
| 216 | 167 | sqsqrtd | ⊢ ( 𝜑 → ( ( √ ‘ ( 𝑋 , 𝑋 ) ) ↑ 2 ) = ( 𝑋 , 𝑋 ) ) |
| 217 | 30 | sqsqrtd | ⊢ ( 𝜑 → ( ( √ ‘ ( 𝑌 , 𝑌 ) ) ↑ 2 ) = ( 𝑌 , 𝑌 ) ) |
| 218 | 216 217 | oveq12d | ⊢ ( 𝜑 → ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) ↑ 2 ) · ( ( √ ‘ ( 𝑌 , 𝑌 ) ) ↑ 2 ) ) = ( ( 𝑋 , 𝑋 ) · ( 𝑌 , 𝑌 ) ) ) |
| 219 | 215 218 | eqtrd | ⊢ ( 𝜑 → ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↑ 2 ) = ( ( 𝑋 , 𝑋 ) · ( 𝑌 , 𝑌 ) ) ) |
| 220 | 210 171 219 | 3brtr4d | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 , 𝑌 ) ) ↑ 2 ) ≤ ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↑ 2 ) ) |
| 221 | 211 213 | remulcld | ⊢ ( 𝜑 → ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ∈ ℝ ) |
| 222 | 22 | absge0d | ⊢ ( 𝜑 → 0 ≤ ( abs ‘ ( 𝑋 , 𝑌 ) ) ) |
| 223 | 166 207 | sqrtge0d | ⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( 𝑋 , 𝑋 ) ) ) |
| 224 | 29 192 | sqrtge0d | ⊢ ( 𝜑 → 0 ≤ ( √ ‘ ( 𝑌 , 𝑌 ) ) ) |
| 225 | 211 213 223 224 | mulge0d | ⊢ ( 𝜑 → 0 ≤ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
| 226 | 172 221 222 225 | le2sqd | ⊢ ( 𝜑 → ( ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↔ ( ( abs ‘ ( 𝑋 , 𝑌 ) ) ↑ 2 ) ≤ ( ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ↑ 2 ) ) ) |
| 227 | 220 226 | mpbird | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
| 228 | lmodgrp | ⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) | |
| 229 | 51 228 | syl | ⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
| 230 | 1 10 2 6 | tcphnmval | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑋 ) = ( √ ‘ ( 𝑋 , 𝑋 ) ) ) |
| 231 | 229 12 230 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) = ( √ ‘ ( 𝑋 , 𝑋 ) ) ) |
| 232 | 1 10 2 6 | tcphnmval | ⊢ ( ( 𝑊 ∈ Grp ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ 𝑌 ) = ( √ ‘ ( 𝑌 , 𝑌 ) ) ) |
| 233 | 229 13 232 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑌 ) = ( √ ‘ ( 𝑌 , 𝑌 ) ) ) |
| 234 | 231 233 | oveq12d | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) = ( ( √ ‘ ( 𝑋 , 𝑋 ) ) · ( √ ‘ ( 𝑌 , 𝑌 ) ) ) ) |
| 235 | 227 234 | breqtrrd | ⊢ ( 𝜑 → ( abs ‘ ( 𝑋 , 𝑌 ) ) ≤ ( ( 𝑁 ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |