This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for inner product subtraction. (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| ipsubdir.m | ⊢ − = ( -g ‘ 𝑊 ) | ||
| ipsubdir.s | ⊢ 𝑆 = ( -g ‘ 𝐹 ) | ||
| ip2subdi.p | ⊢ + = ( +g ‘ 𝐹 ) | ||
| ip2subdi.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | ||
| ip2subdi.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| ip2subdi.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| ip2subdi.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| ip2subdi.5 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | ||
| Assertion | ip2subdi | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) , ( 𝐶 − 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) 𝑆 ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | ipsubdir.m | ⊢ − = ( -g ‘ 𝑊 ) | |
| 5 | ipsubdir.s | ⊢ 𝑆 = ( -g ‘ 𝐹 ) | |
| 6 | ip2subdi.p | ⊢ + = ( +g ‘ 𝐹 ) | |
| 7 | ip2subdi.1 | ⊢ ( 𝜑 → 𝑊 ∈ PreHil ) | |
| 8 | ip2subdi.2 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 9 | ip2subdi.3 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 10 | ip2subdi.4 | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 11 | ip2subdi.5 | ⊢ ( 𝜑 → 𝐷 ∈ 𝑉 ) | |
| 12 | eqid | ⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) | |
| 13 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 14 | 7 13 | syl | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
| 15 | 1 | lmodring | ⊢ ( 𝑊 ∈ LMod → 𝐹 ∈ Ring ) |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
| 17 | ringabl | ⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Abel ) | |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Abel ) |
| 19 | 1 2 3 12 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
| 20 | 7 8 10 19 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
| 21 | 1 2 3 12 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) |
| 22 | 7 8 11 21 | syl3anc | ⊢ ( 𝜑 → ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) |
| 23 | 1 2 3 12 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
| 24 | 7 9 10 23 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) |
| 25 | 12 6 5 18 20 22 24 | ablsubsub4 | ⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) 𝑆 ( 𝐵 , 𝐶 ) ) = ( ( 𝐴 , 𝐶 ) 𝑆 ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) ) |
| 26 | 25 | oveq1d | ⊢ ( 𝜑 → ( ( ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) 𝑆 ( 𝐵 , 𝐶 ) ) + ( 𝐵 , 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) 𝑆 ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) + ( 𝐵 , 𝐷 ) ) ) |
| 27 | 3 4 | lmodvsubcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐶 − 𝐷 ) ∈ 𝑉 ) |
| 28 | 14 10 11 27 | syl3anc | ⊢ ( 𝜑 → ( 𝐶 − 𝐷 ) ∈ 𝑉 ) |
| 29 | 1 2 3 4 5 | ipsubdir | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ ( 𝐶 − 𝐷 ) ∈ 𝑉 ) ) → ( ( 𝐴 − 𝐵 ) , ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 , ( 𝐶 − 𝐷 ) ) 𝑆 ( 𝐵 , ( 𝐶 − 𝐷 ) ) ) ) |
| 30 | 7 8 9 28 29 | syl13anc | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) , ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 , ( 𝐶 − 𝐷 ) ) 𝑆 ( 𝐵 , ( 𝐶 − 𝐷 ) ) ) ) |
| 31 | 1 2 3 4 5 | ipsubdi | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) ) |
| 32 | 7 8 10 11 31 | syl13anc | ⊢ ( 𝜑 → ( 𝐴 , ( 𝐶 − 𝐷 ) ) = ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) ) |
| 33 | 1 2 3 4 5 | ipsubdi | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) ) → ( 𝐵 , ( 𝐶 − 𝐷 ) ) = ( ( 𝐵 , 𝐶 ) 𝑆 ( 𝐵 , 𝐷 ) ) ) |
| 34 | 7 9 10 11 33 | syl13anc | ⊢ ( 𝜑 → ( 𝐵 , ( 𝐶 − 𝐷 ) ) = ( ( 𝐵 , 𝐶 ) 𝑆 ( 𝐵 , 𝐷 ) ) ) |
| 35 | 32 34 | oveq12d | ⊢ ( 𝜑 → ( ( 𝐴 , ( 𝐶 − 𝐷 ) ) 𝑆 ( 𝐵 , ( 𝐶 − 𝐷 ) ) ) = ( ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) 𝑆 ( ( 𝐵 , 𝐶 ) 𝑆 ( 𝐵 , 𝐷 ) ) ) ) |
| 36 | ringgrp | ⊢ ( 𝐹 ∈ Ring → 𝐹 ∈ Grp ) | |
| 37 | 16 36 | syl | ⊢ ( 𝜑 → 𝐹 ∈ Grp ) |
| 38 | 12 5 | grpsubcl | ⊢ ( ( 𝐹 ∈ Grp ∧ ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) ∈ ( Base ‘ 𝐹 ) ) |
| 39 | 37 20 22 38 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) ∈ ( Base ‘ 𝐹 ) ) |
| 40 | 1 2 3 12 | ipcl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐷 ∈ 𝑉 ) → ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) |
| 41 | 7 9 11 40 | syl3anc | ⊢ ( 𝜑 → ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ) |
| 42 | 12 6 5 18 39 24 41 | ablsubsub | ⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) 𝑆 ( ( 𝐵 , 𝐶 ) 𝑆 ( 𝐵 , 𝐷 ) ) ) = ( ( ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) 𝑆 ( 𝐵 , 𝐶 ) ) + ( 𝐵 , 𝐷 ) ) ) |
| 43 | 30 35 42 | 3eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) , ( 𝐶 − 𝐷 ) ) = ( ( ( ( 𝐴 , 𝐶 ) 𝑆 ( 𝐴 , 𝐷 ) ) 𝑆 ( 𝐵 , 𝐶 ) ) + ( 𝐵 , 𝐷 ) ) ) |
| 44 | 12 6 | ringacl | ⊢ ( ( 𝐹 ∈ Ring ∧ ( 𝐴 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐵 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ) → ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ∈ ( Base ‘ 𝐹 ) ) |
| 45 | 16 22 24 44 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ∈ ( Base ‘ 𝐹 ) ) |
| 46 | 12 6 5 | abladdsub | ⊢ ( ( 𝐹 ∈ Abel ∧ ( ( 𝐴 , 𝐶 ) ∈ ( Base ‘ 𝐹 ) ∧ ( 𝐵 , 𝐷 ) ∈ ( Base ‘ 𝐹 ) ∧ ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ∈ ( Base ‘ 𝐹 ) ) ) → ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) 𝑆 ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) 𝑆 ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) + ( 𝐵 , 𝐷 ) ) ) |
| 47 | 18 20 41 45 46 | syl13anc | ⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) 𝑆 ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) = ( ( ( 𝐴 , 𝐶 ) 𝑆 ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) + ( 𝐵 , 𝐷 ) ) ) |
| 48 | 26 43 47 | 3eqtr4d | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) , ( 𝐶 − 𝐷 ) ) = ( ( ( 𝐴 , 𝐶 ) + ( 𝐵 , 𝐷 ) ) 𝑆 ( ( 𝐴 , 𝐷 ) + ( 𝐵 , 𝐶 ) ) ) ) |