This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Cauchy-Schwarz inequality for a subcomplex pre-Hilbert space built from a pre-Hilbert space with certain properties. The main theorem is ipcau . (Contributed by Mario Carneiro, 11-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| tcphcph.v | |- V = ( Base ` W ) |
||
| tcphcph.f | |- F = ( Scalar ` W ) |
||
| tcphcph.1 | |- ( ph -> W e. PreHil ) |
||
| tcphcph.2 | |- ( ph -> F = ( CCfld |`s K ) ) |
||
| tcphcph.h | |- ., = ( .i ` W ) |
||
| tcphcph.3 | |- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. K ) |
||
| tcphcph.4 | |- ( ( ph /\ x e. V ) -> 0 <_ ( x ., x ) ) |
||
| tcphcph.k | |- K = ( Base ` F ) |
||
| ipcau2.n | |- N = ( norm ` G ) |
||
| ipcau2.c | |- C = ( ( Y ., X ) / ( Y ., Y ) ) |
||
| ipcau2.3 | |- ( ph -> X e. V ) |
||
| ipcau2.4 | |- ( ph -> Y e. V ) |
||
| Assertion | ipcau2 | |- ( ph -> ( abs ` ( X ., Y ) ) <_ ( ( N ` X ) x. ( N ` Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tcphval.n | |- G = ( toCPreHil ` W ) |
|
| 2 | tcphcph.v | |- V = ( Base ` W ) |
|
| 3 | tcphcph.f | |- F = ( Scalar ` W ) |
|
| 4 | tcphcph.1 | |- ( ph -> W e. PreHil ) |
|
| 5 | tcphcph.2 | |- ( ph -> F = ( CCfld |`s K ) ) |
|
| 6 | tcphcph.h | |- ., = ( .i ` W ) |
|
| 7 | tcphcph.3 | |- ( ( ph /\ ( x e. K /\ x e. RR /\ 0 <_ x ) ) -> ( sqrt ` x ) e. K ) |
|
| 8 | tcphcph.4 | |- ( ( ph /\ x e. V ) -> 0 <_ ( x ., x ) ) |
|
| 9 | tcphcph.k | |- K = ( Base ` F ) |
|
| 10 | ipcau2.n | |- N = ( norm ` G ) |
|
| 11 | ipcau2.c | |- C = ( ( Y ., X ) / ( Y ., Y ) ) |
|
| 12 | ipcau2.3 | |- ( ph -> X e. V ) |
|
| 13 | ipcau2.4 | |- ( ph -> Y e. V ) |
|
| 14 | oveq2 | |- ( Y = ( 0g ` W ) -> ( X ., Y ) = ( X ., ( 0g ` W ) ) ) |
|
| 15 | 14 | oveq1d | |- ( Y = ( 0g ` W ) -> ( ( X ., Y ) x. ( Y ., X ) ) = ( ( X ., ( 0g ` W ) ) x. ( Y ., X ) ) ) |
| 16 | 15 | breq1d | |- ( Y = ( 0g ` W ) -> ( ( ( X ., Y ) x. ( Y ., X ) ) <_ ( ( X ., X ) x. ( Y ., Y ) ) <-> ( ( X ., ( 0g ` W ) ) x. ( Y ., X ) ) <_ ( ( X ., X ) x. ( Y ., Y ) ) ) ) |
| 17 | 1 2 3 4 5 | phclm | |- ( ph -> W e. CMod ) |
| 18 | 3 9 | clmsscn | |- ( W e. CMod -> K C_ CC ) |
| 19 | 17 18 | syl | |- ( ph -> K C_ CC ) |
| 20 | 3 6 2 9 | ipcl | |- ( ( W e. PreHil /\ X e. V /\ Y e. V ) -> ( X ., Y ) e. K ) |
| 21 | 4 12 13 20 | syl3anc | |- ( ph -> ( X ., Y ) e. K ) |
| 22 | 19 21 | sseldd | |- ( ph -> ( X ., Y ) e. CC ) |
| 23 | 22 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ., Y ) e. CC ) |
| 24 | 3 6 2 9 | ipcl | |- ( ( W e. PreHil /\ Y e. V /\ X e. V ) -> ( Y ., X ) e. K ) |
| 25 | 4 13 12 24 | syl3anc | |- ( ph -> ( Y ., X ) e. K ) |
| 26 | 19 25 | sseldd | |- ( ph -> ( Y ., X ) e. CC ) |
| 27 | 26 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( Y ., X ) e. CC ) |
| 28 | 1 2 3 4 5 6 | tcphcphlem3 | |- ( ( ph /\ Y e. V ) -> ( Y ., Y ) e. RR ) |
| 29 | 13 28 | mpdan | |- ( ph -> ( Y ., Y ) e. RR ) |
| 30 | 29 | recnd | |- ( ph -> ( Y ., Y ) e. CC ) |
| 31 | 30 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( Y ., Y ) e. CC ) |
| 32 | 3 | clm0 | |- ( W e. CMod -> 0 = ( 0g ` F ) ) |
| 33 | 17 32 | syl | |- ( ph -> 0 = ( 0g ` F ) ) |
| 34 | 33 | eqeq2d | |- ( ph -> ( ( Y ., Y ) = 0 <-> ( Y ., Y ) = ( 0g ` F ) ) ) |
| 35 | eqid | |- ( 0g ` F ) = ( 0g ` F ) |
|
| 36 | eqid | |- ( 0g ` W ) = ( 0g ` W ) |
|
| 37 | 3 6 2 35 36 | ipeq0 | |- ( ( W e. PreHil /\ Y e. V ) -> ( ( Y ., Y ) = ( 0g ` F ) <-> Y = ( 0g ` W ) ) ) |
| 38 | 4 13 37 | syl2anc | |- ( ph -> ( ( Y ., Y ) = ( 0g ` F ) <-> Y = ( 0g ` W ) ) ) |
| 39 | 34 38 | bitrd | |- ( ph -> ( ( Y ., Y ) = 0 <-> Y = ( 0g ` W ) ) ) |
| 40 | 39 | necon3bid | |- ( ph -> ( ( Y ., Y ) =/= 0 <-> Y =/= ( 0g ` W ) ) ) |
| 41 | 40 | biimpar | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( Y ., Y ) =/= 0 ) |
| 42 | 23 27 31 41 | divassd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., Y ) x. ( Y ., X ) ) / ( Y ., Y ) ) = ( ( X ., Y ) x. ( ( Y ., X ) / ( Y ., Y ) ) ) ) |
| 43 | 11 | oveq2i | |- ( ( X ., Y ) x. C ) = ( ( X ., Y ) x. ( ( Y ., X ) / ( Y ., Y ) ) ) |
| 44 | 42 43 | eqtr4di | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., Y ) x. ( Y ., X ) ) / ( Y ., Y ) ) = ( ( X ., Y ) x. C ) ) |
| 45 | oveq12 | |- ( ( x = ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) /\ x = ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ) -> ( x ., x ) = ( ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ., ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ) ) |
|
| 46 | 45 | anidms | |- ( x = ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) -> ( x ., x ) = ( ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ., ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ) ) |
| 47 | 46 | breq2d | |- ( x = ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) -> ( 0 <_ ( x ., x ) <-> 0 <_ ( ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ., ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ) ) ) |
| 48 | 8 | ralrimiva | |- ( ph -> A. x e. V 0 <_ ( x ., x ) ) |
| 49 | 48 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> A. x e. V 0 <_ ( x ., x ) ) |
| 50 | phllmod | |- ( W e. PreHil -> W e. LMod ) |
|
| 51 | 4 50 | syl | |- ( ph -> W e. LMod ) |
| 52 | 51 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> W e. LMod ) |
| 53 | 12 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> X e. V ) |
| 54 | 11 | fveq2i | |- ( * ` C ) = ( * ` ( ( Y ., X ) / ( Y ., Y ) ) ) |
| 55 | 27 31 41 | cjdivd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` ( ( Y ., X ) / ( Y ., Y ) ) ) = ( ( * ` ( Y ., X ) ) / ( * ` ( Y ., Y ) ) ) ) |
| 56 | 54 55 | eqtrid | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` C ) = ( ( * ` ( Y ., X ) ) / ( * ` ( Y ., Y ) ) ) ) |
| 57 | 5 | fveq2d | |- ( ph -> ( *r ` F ) = ( *r ` ( CCfld |`s K ) ) ) |
| 58 | 9 | fvexi | |- K e. _V |
| 59 | eqid | |- ( CCfld |`s K ) = ( CCfld |`s K ) |
|
| 60 | cnfldcj | |- * = ( *r ` CCfld ) |
|
| 61 | 59 60 | ressstarv | |- ( K e. _V -> * = ( *r ` ( CCfld |`s K ) ) ) |
| 62 | 58 61 | ax-mp | |- * = ( *r ` ( CCfld |`s K ) ) |
| 63 | 57 62 | eqtr4di | |- ( ph -> ( *r ` F ) = * ) |
| 64 | 63 | fveq1d | |- ( ph -> ( ( *r ` F ) ` ( X ., Y ) ) = ( * ` ( X ., Y ) ) ) |
| 65 | eqid | |- ( *r ` F ) = ( *r ` F ) |
|
| 66 | 3 6 2 65 | ipcj | |- ( ( W e. PreHil /\ X e. V /\ Y e. V ) -> ( ( *r ` F ) ` ( X ., Y ) ) = ( Y ., X ) ) |
| 67 | 4 12 13 66 | syl3anc | |- ( ph -> ( ( *r ` F ) ` ( X ., Y ) ) = ( Y ., X ) ) |
| 68 | 64 67 | eqtr3d | |- ( ph -> ( * ` ( X ., Y ) ) = ( Y ., X ) ) |
| 69 | 68 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` ( X ., Y ) ) = ( Y ., X ) ) |
| 70 | 69 | fveq2d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` ( * ` ( X ., Y ) ) ) = ( * ` ( Y ., X ) ) ) |
| 71 | 23 | cjcjd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` ( * ` ( X ., Y ) ) ) = ( X ., Y ) ) |
| 72 | 70 71 | eqtr3d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` ( Y ., X ) ) = ( X ., Y ) ) |
| 73 | 29 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( Y ., Y ) e. RR ) |
| 74 | 73 | cjred | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` ( Y ., Y ) ) = ( Y ., Y ) ) |
| 75 | 72 74 | oveq12d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( * ` ( Y ., X ) ) / ( * ` ( Y ., Y ) ) ) = ( ( X ., Y ) / ( Y ., Y ) ) ) |
| 76 | 23 31 41 | divrecd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) / ( Y ., Y ) ) = ( ( X ., Y ) x. ( 1 / ( Y ., Y ) ) ) ) |
| 77 | 56 75 76 | 3eqtrd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` C ) = ( ( X ., Y ) x. ( 1 / ( Y ., Y ) ) ) ) |
| 78 | 17 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> W e. CMod ) |
| 79 | 21 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ., Y ) e. K ) |
| 80 | 3 6 2 9 | ipcl | |- ( ( W e. PreHil /\ Y e. V /\ Y e. V ) -> ( Y ., Y ) e. K ) |
| 81 | 4 13 13 80 | syl3anc | |- ( ph -> ( Y ., Y ) e. K ) |
| 82 | 81 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( Y ., Y ) e. K ) |
| 83 | 5 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> F = ( CCfld |`s K ) ) |
| 84 | phllvec | |- ( W e. PreHil -> W e. LVec ) |
|
| 85 | 4 84 | syl | |- ( ph -> W e. LVec ) |
| 86 | 3 | lvecdrng | |- ( W e. LVec -> F e. DivRing ) |
| 87 | 85 86 | syl | |- ( ph -> F e. DivRing ) |
| 88 | 87 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> F e. DivRing ) |
| 89 | 9 83 88 | cphreccllem | |- ( ( ( ph /\ Y =/= ( 0g ` W ) ) /\ ( Y ., Y ) e. K /\ ( Y ., Y ) =/= 0 ) -> ( 1 / ( Y ., Y ) ) e. K ) |
| 90 | 82 41 89 | mpd3an23 | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( 1 / ( Y ., Y ) ) e. K ) |
| 91 | 3 9 | clmmcl | |- ( ( W e. CMod /\ ( X ., Y ) e. K /\ ( 1 / ( Y ., Y ) ) e. K ) -> ( ( X ., Y ) x. ( 1 / ( Y ., Y ) ) ) e. K ) |
| 92 | 78 79 90 91 | syl3anc | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) x. ( 1 / ( Y ., Y ) ) ) e. K ) |
| 93 | 77 92 | eqeltrd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` C ) e. K ) |
| 94 | 13 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> Y e. V ) |
| 95 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 96 | 2 3 95 9 | lmodvscl | |- ( ( W e. LMod /\ ( * ` C ) e. K /\ Y e. V ) -> ( ( * ` C ) ( .s ` W ) Y ) e. V ) |
| 97 | 52 93 94 96 | syl3anc | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( * ` C ) ( .s ` W ) Y ) e. V ) |
| 98 | eqid | |- ( -g ` W ) = ( -g ` W ) |
|
| 99 | 2 98 | lmodvsubcl | |- ( ( W e. LMod /\ X e. V /\ ( ( * ` C ) ( .s ` W ) Y ) e. V ) -> ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) e. V ) |
| 100 | 52 53 97 99 | syl3anc | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) e. V ) |
| 101 | 47 49 100 | rspcdva | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> 0 <_ ( ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ., ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ) ) |
| 102 | eqid | |- ( -g ` F ) = ( -g ` F ) |
|
| 103 | eqid | |- ( +g ` F ) = ( +g ` F ) |
|
| 104 | 4 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> W e. PreHil ) |
| 105 | 3 6 2 98 102 103 104 53 97 53 97 | ip2subdi | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ., ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ) = ( ( ( X ., X ) ( +g ` F ) ( ( ( * ` C ) ( .s ` W ) Y ) ., ( ( * ` C ) ( .s ` W ) Y ) ) ) ( -g ` F ) ( ( X ., ( ( * ` C ) ( .s ` W ) Y ) ) ( +g ` F ) ( ( ( * ` C ) ( .s ` W ) Y ) ., X ) ) ) ) |
| 106 | 83 | fveq2d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( +g ` F ) = ( +g ` ( CCfld |`s K ) ) ) |
| 107 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 108 | 59 107 | ressplusg | |- ( K e. _V -> + = ( +g ` ( CCfld |`s K ) ) ) |
| 109 | 58 108 | ax-mp | |- + = ( +g ` ( CCfld |`s K ) ) |
| 110 | 106 109 | eqtr4di | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( +g ` F ) = + ) |
| 111 | eqidd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ., X ) = ( X ., X ) ) |
|
| 112 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 113 | 3 6 2 9 95 112 | ipass | |- ( ( W e. PreHil /\ ( ( * ` C ) e. K /\ Y e. V /\ ( ( * ` C ) ( .s ` W ) Y ) e. V ) ) -> ( ( ( * ` C ) ( .s ` W ) Y ) ., ( ( * ` C ) ( .s ` W ) Y ) ) = ( ( * ` C ) ( .r ` F ) ( Y ., ( ( * ` C ) ( .s ` W ) Y ) ) ) ) |
| 114 | 104 93 94 97 113 | syl13anc | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( * ` C ) ( .s ` W ) Y ) ., ( ( * ` C ) ( .s ` W ) Y ) ) = ( ( * ` C ) ( .r ` F ) ( Y ., ( ( * ` C ) ( .s ` W ) Y ) ) ) ) |
| 115 | 83 | fveq2d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( .r ` F ) = ( .r ` ( CCfld |`s K ) ) ) |
| 116 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 117 | 59 116 | ressmulr | |- ( K e. _V -> x. = ( .r ` ( CCfld |`s K ) ) ) |
| 118 | 58 117 | ax-mp | |- x. = ( .r ` ( CCfld |`s K ) ) |
| 119 | 115 118 | eqtr4di | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( .r ` F ) = x. ) |
| 120 | eqidd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( * ` C ) = ( * ` C ) ) |
|
| 121 | 27 31 41 | divrecd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( Y ., X ) / ( Y ., Y ) ) = ( ( Y ., X ) x. ( 1 / ( Y ., Y ) ) ) ) |
| 122 | 11 121 | eqtrid | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> C = ( ( Y ., X ) x. ( 1 / ( Y ., Y ) ) ) ) |
| 123 | 25 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( Y ., X ) e. K ) |
| 124 | 3 9 | clmmcl | |- ( ( W e. CMod /\ ( Y ., X ) e. K /\ ( 1 / ( Y ., Y ) ) e. K ) -> ( ( Y ., X ) x. ( 1 / ( Y ., Y ) ) ) e. K ) |
| 125 | 78 123 90 124 | syl3anc | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( Y ., X ) x. ( 1 / ( Y ., Y ) ) ) e. K ) |
| 126 | 122 125 | eqeltrd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> C e. K ) |
| 127 | 3 6 2 9 95 112 65 | ipassr2 | |- ( ( W e. PreHil /\ ( Y e. V /\ Y e. V /\ C e. K ) ) -> ( ( Y ., Y ) ( .r ` F ) C ) = ( Y ., ( ( ( *r ` F ) ` C ) ( .s ` W ) Y ) ) ) |
| 128 | 104 94 94 126 127 | syl13anc | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( Y ., Y ) ( .r ` F ) C ) = ( Y ., ( ( ( *r ` F ) ` C ) ( .s ` W ) Y ) ) ) |
| 129 | 119 | oveqd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( Y ., Y ) ( .r ` F ) C ) = ( ( Y ., Y ) x. C ) ) |
| 130 | 11 | oveq2i | |- ( ( Y ., Y ) x. C ) = ( ( Y ., Y ) x. ( ( Y ., X ) / ( Y ., Y ) ) ) |
| 131 | 27 31 41 | divcan2d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( Y ., Y ) x. ( ( Y ., X ) / ( Y ., Y ) ) ) = ( Y ., X ) ) |
| 132 | 130 131 | eqtrid | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( Y ., Y ) x. C ) = ( Y ., X ) ) |
| 133 | 129 132 | eqtrd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( Y ., Y ) ( .r ` F ) C ) = ( Y ., X ) ) |
| 134 | 63 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( *r ` F ) = * ) |
| 135 | 134 | fveq1d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( *r ` F ) ` C ) = ( * ` C ) ) |
| 136 | 135 | oveq1d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( *r ` F ) ` C ) ( .s ` W ) Y ) = ( ( * ` C ) ( .s ` W ) Y ) ) |
| 137 | 136 | oveq2d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( Y ., ( ( ( *r ` F ) ` C ) ( .s ` W ) Y ) ) = ( Y ., ( ( * ` C ) ( .s ` W ) Y ) ) ) |
| 138 | 128 133 137 | 3eqtr3rd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( Y ., ( ( * ` C ) ( .s ` W ) Y ) ) = ( Y ., X ) ) |
| 139 | 119 120 138 | oveq123d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( * ` C ) ( .r ` F ) ( Y ., ( ( * ` C ) ( .s ` W ) Y ) ) ) = ( ( * ` C ) x. ( Y ., X ) ) ) |
| 140 | 114 139 | eqtrd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( * ` C ) ( .s ` W ) Y ) ., ( ( * ` C ) ( .s ` W ) Y ) ) = ( ( * ` C ) x. ( Y ., X ) ) ) |
| 141 | 110 111 140 | oveq123d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., X ) ( +g ` F ) ( ( ( * ` C ) ( .s ` W ) Y ) ., ( ( * ` C ) ( .s ` W ) Y ) ) ) = ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) |
| 142 | 3 6 2 9 95 112 65 | ipassr2 | |- ( ( W e. PreHil /\ ( X e. V /\ Y e. V /\ C e. K ) ) -> ( ( X ., Y ) ( .r ` F ) C ) = ( X ., ( ( ( *r ` F ) ` C ) ( .s ` W ) Y ) ) ) |
| 143 | 104 53 94 126 142 | syl13anc | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) ( .r ` F ) C ) = ( X ., ( ( ( *r ` F ) ` C ) ( .s ` W ) Y ) ) ) |
| 144 | 119 | oveqd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) ( .r ` F ) C ) = ( ( X ., Y ) x. C ) ) |
| 145 | 136 | oveq2d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ., ( ( ( *r ` F ) ` C ) ( .s ` W ) Y ) ) = ( X ., ( ( * ` C ) ( .s ` W ) Y ) ) ) |
| 146 | 143 144 145 | 3eqtr3rd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ., ( ( * ` C ) ( .s ` W ) Y ) ) = ( ( X ., Y ) x. C ) ) |
| 147 | 3 6 2 9 95 112 | ipass | |- ( ( W e. PreHil /\ ( ( * ` C ) e. K /\ Y e. V /\ X e. V ) ) -> ( ( ( * ` C ) ( .s ` W ) Y ) ., X ) = ( ( * ` C ) ( .r ` F ) ( Y ., X ) ) ) |
| 148 | 104 93 94 53 147 | syl13anc | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( * ` C ) ( .s ` W ) Y ) ., X ) = ( ( * ` C ) ( .r ` F ) ( Y ., X ) ) ) |
| 149 | 119 | oveqd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( * ` C ) ( .r ` F ) ( Y ., X ) ) = ( ( * ` C ) x. ( Y ., X ) ) ) |
| 150 | 148 149 | eqtrd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( * ` C ) ( .s ` W ) Y ) ., X ) = ( ( * ` C ) x. ( Y ., X ) ) ) |
| 151 | 110 146 150 | oveq123d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., ( ( * ` C ) ( .s ` W ) Y ) ) ( +g ` F ) ( ( ( * ` C ) ( .s ` W ) Y ) ., X ) ) = ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) |
| 152 | 141 151 | oveq12d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., X ) ( +g ` F ) ( ( ( * ` C ) ( .s ` W ) Y ) ., ( ( * ` C ) ( .s ` W ) Y ) ) ) ( -g ` F ) ( ( X ., ( ( * ` C ) ( .s ` W ) Y ) ) ( +g ` F ) ( ( ( * ` C ) ( .s ` W ) Y ) ., X ) ) ) = ( ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) ( -g ` F ) ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) ) |
| 153 | 3 6 2 9 | ipcl | |- ( ( W e. PreHil /\ X e. V /\ X e. V ) -> ( X ., X ) e. K ) |
| 154 | 104 53 53 153 | syl3anc | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ., X ) e. K ) |
| 155 | 3 9 | clmmcl | |- ( ( W e. CMod /\ ( * ` C ) e. K /\ ( Y ., X ) e. K ) -> ( ( * ` C ) x. ( Y ., X ) ) e. K ) |
| 156 | 78 93 123 155 | syl3anc | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( * ` C ) x. ( Y ., X ) ) e. K ) |
| 157 | 3 9 | clmacl | |- ( ( W e. CMod /\ ( X ., X ) e. K /\ ( ( * ` C ) x. ( Y ., X ) ) e. K ) -> ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) e. K ) |
| 158 | 78 154 156 157 | syl3anc | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) e. K ) |
| 159 | 3 9 | clmmcl | |- ( ( W e. CMod /\ ( X ., Y ) e. K /\ C e. K ) -> ( ( X ., Y ) x. C ) e. K ) |
| 160 | 78 79 126 159 | syl3anc | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) x. C ) e. K ) |
| 161 | 3 9 | clmacl | |- ( ( W e. CMod /\ ( ( X ., Y ) x. C ) e. K /\ ( ( * ` C ) x. ( Y ., X ) ) e. K ) -> ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) e. K ) |
| 162 | 78 160 156 161 | syl3anc | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) e. K ) |
| 163 | 3 9 | clmsub | |- ( ( W e. CMod /\ ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) e. K /\ ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) e. K ) -> ( ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) - ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) = ( ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) ( -g ` F ) ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) ) |
| 164 | 78 158 162 163 | syl3anc | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) - ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) = ( ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) ( -g ` F ) ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) ) |
| 165 | 1 2 3 4 5 6 | tcphcphlem3 | |- ( ( ph /\ X e. V ) -> ( X ., X ) e. RR ) |
| 166 | 12 165 | mpdan | |- ( ph -> ( X ., X ) e. RR ) |
| 167 | 166 | recnd | |- ( ph -> ( X ., X ) e. CC ) |
| 168 | 167 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ., X ) e. CC ) |
| 169 | 22 | absvalsqd | |- ( ph -> ( ( abs ` ( X ., Y ) ) ^ 2 ) = ( ( X ., Y ) x. ( * ` ( X ., Y ) ) ) ) |
| 170 | 68 | oveq2d | |- ( ph -> ( ( X ., Y ) x. ( * ` ( X ., Y ) ) ) = ( ( X ., Y ) x. ( Y ., X ) ) ) |
| 171 | 169 170 | eqtrd | |- ( ph -> ( ( abs ` ( X ., Y ) ) ^ 2 ) = ( ( X ., Y ) x. ( Y ., X ) ) ) |
| 172 | 22 | abscld | |- ( ph -> ( abs ` ( X ., Y ) ) e. RR ) |
| 173 | 172 | resqcld | |- ( ph -> ( ( abs ` ( X ., Y ) ) ^ 2 ) e. RR ) |
| 174 | 171 173 | eqeltrrd | |- ( ph -> ( ( X ., Y ) x. ( Y ., X ) ) e. RR ) |
| 175 | 174 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) x. ( Y ., X ) ) e. RR ) |
| 176 | 175 73 41 | redivcld | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., Y ) x. ( Y ., X ) ) / ( Y ., Y ) ) e. RR ) |
| 177 | 44 176 | eqeltrrd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) x. C ) e. RR ) |
| 178 | 177 | recnd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) x. C ) e. CC ) |
| 179 | 78 18 | syl | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> K C_ CC ) |
| 180 | 179 156 | sseldd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( * ` C ) x. ( Y ., X ) ) e. CC ) |
| 181 | 168 178 180 | pnpcan2d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) - ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) = ( ( X ., X ) - ( ( X ., Y ) x. C ) ) ) |
| 182 | 164 181 | eqtr3d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., X ) + ( ( * ` C ) x. ( Y ., X ) ) ) ( -g ` F ) ( ( ( X ., Y ) x. C ) + ( ( * ` C ) x. ( Y ., X ) ) ) ) = ( ( X ., X ) - ( ( X ., Y ) x. C ) ) ) |
| 183 | 105 152 182 | 3eqtrd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ., ( X ( -g ` W ) ( ( * ` C ) ( .s ` W ) Y ) ) ) = ( ( X ., X ) - ( ( X ., Y ) x. C ) ) ) |
| 184 | 101 183 | breqtrd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> 0 <_ ( ( X ., X ) - ( ( X ., Y ) x. C ) ) ) |
| 185 | 166 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( X ., X ) e. RR ) |
| 186 | 185 177 | subge0d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( 0 <_ ( ( X ., X ) - ( ( X ., Y ) x. C ) ) <-> ( ( X ., Y ) x. C ) <_ ( X ., X ) ) ) |
| 187 | 184 186 | mpbid | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) x. C ) <_ ( X ., X ) ) |
| 188 | 44 187 | eqbrtrd | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( X ., Y ) x. ( Y ., X ) ) / ( Y ., Y ) ) <_ ( X ., X ) ) |
| 189 | oveq12 | |- ( ( x = Y /\ x = Y ) -> ( x ., x ) = ( Y ., Y ) ) |
|
| 190 | 189 | anidms | |- ( x = Y -> ( x ., x ) = ( Y ., Y ) ) |
| 191 | 190 | breq2d | |- ( x = Y -> ( 0 <_ ( x ., x ) <-> 0 <_ ( Y ., Y ) ) ) |
| 192 | 191 48 13 | rspcdva | |- ( ph -> 0 <_ ( Y ., Y ) ) |
| 193 | 192 | adantr | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> 0 <_ ( Y ., Y ) ) |
| 194 | 73 193 41 | ne0gt0d | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> 0 < ( Y ., Y ) ) |
| 195 | ledivmul2 | |- ( ( ( ( X ., Y ) x. ( Y ., X ) ) e. RR /\ ( X ., X ) e. RR /\ ( ( Y ., Y ) e. RR /\ 0 < ( Y ., Y ) ) ) -> ( ( ( ( X ., Y ) x. ( Y ., X ) ) / ( Y ., Y ) ) <_ ( X ., X ) <-> ( ( X ., Y ) x. ( Y ., X ) ) <_ ( ( X ., X ) x. ( Y ., Y ) ) ) ) |
|
| 196 | 175 185 73 194 195 | syl112anc | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( ( ( X ., Y ) x. ( Y ., X ) ) / ( Y ., Y ) ) <_ ( X ., X ) <-> ( ( X ., Y ) x. ( Y ., X ) ) <_ ( ( X ., X ) x. ( Y ., Y ) ) ) ) |
| 197 | 188 196 | mpbid | |- ( ( ph /\ Y =/= ( 0g ` W ) ) -> ( ( X ., Y ) x. ( Y ., X ) ) <_ ( ( X ., X ) x. ( Y ., Y ) ) ) |
| 198 | 3 6 2 35 36 | ip0r | |- ( ( W e. PreHil /\ X e. V ) -> ( X ., ( 0g ` W ) ) = ( 0g ` F ) ) |
| 199 | 4 12 198 | syl2anc | |- ( ph -> ( X ., ( 0g ` W ) ) = ( 0g ` F ) ) |
| 200 | 199 33 | eqtr4d | |- ( ph -> ( X ., ( 0g ` W ) ) = 0 ) |
| 201 | 200 | oveq1d | |- ( ph -> ( ( X ., ( 0g ` W ) ) x. ( Y ., X ) ) = ( 0 x. ( Y ., X ) ) ) |
| 202 | 26 | mul02d | |- ( ph -> ( 0 x. ( Y ., X ) ) = 0 ) |
| 203 | 201 202 | eqtrd | |- ( ph -> ( ( X ., ( 0g ` W ) ) x. ( Y ., X ) ) = 0 ) |
| 204 | oveq12 | |- ( ( x = X /\ x = X ) -> ( x ., x ) = ( X ., X ) ) |
|
| 205 | 204 | anidms | |- ( x = X -> ( x ., x ) = ( X ., X ) ) |
| 206 | 205 | breq2d | |- ( x = X -> ( 0 <_ ( x ., x ) <-> 0 <_ ( X ., X ) ) ) |
| 207 | 206 48 12 | rspcdva | |- ( ph -> 0 <_ ( X ., X ) ) |
| 208 | 166 29 207 192 | mulge0d | |- ( ph -> 0 <_ ( ( X ., X ) x. ( Y ., Y ) ) ) |
| 209 | 203 208 | eqbrtrd | |- ( ph -> ( ( X ., ( 0g ` W ) ) x. ( Y ., X ) ) <_ ( ( X ., X ) x. ( Y ., Y ) ) ) |
| 210 | 16 197 209 | pm2.61ne | |- ( ph -> ( ( X ., Y ) x. ( Y ., X ) ) <_ ( ( X ., X ) x. ( Y ., Y ) ) ) |
| 211 | 166 207 | resqrtcld | |- ( ph -> ( sqrt ` ( X ., X ) ) e. RR ) |
| 212 | 211 | recnd | |- ( ph -> ( sqrt ` ( X ., X ) ) e. CC ) |
| 213 | 29 192 | resqrtcld | |- ( ph -> ( sqrt ` ( Y ., Y ) ) e. RR ) |
| 214 | 213 | recnd | |- ( ph -> ( sqrt ` ( Y ., Y ) ) e. CC ) |
| 215 | 212 214 | sqmuld | |- ( ph -> ( ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) ^ 2 ) = ( ( ( sqrt ` ( X ., X ) ) ^ 2 ) x. ( ( sqrt ` ( Y ., Y ) ) ^ 2 ) ) ) |
| 216 | 167 | sqsqrtd | |- ( ph -> ( ( sqrt ` ( X ., X ) ) ^ 2 ) = ( X ., X ) ) |
| 217 | 30 | sqsqrtd | |- ( ph -> ( ( sqrt ` ( Y ., Y ) ) ^ 2 ) = ( Y ., Y ) ) |
| 218 | 216 217 | oveq12d | |- ( ph -> ( ( ( sqrt ` ( X ., X ) ) ^ 2 ) x. ( ( sqrt ` ( Y ., Y ) ) ^ 2 ) ) = ( ( X ., X ) x. ( Y ., Y ) ) ) |
| 219 | 215 218 | eqtrd | |- ( ph -> ( ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) ^ 2 ) = ( ( X ., X ) x. ( Y ., Y ) ) ) |
| 220 | 210 171 219 | 3brtr4d | |- ( ph -> ( ( abs ` ( X ., Y ) ) ^ 2 ) <_ ( ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) ^ 2 ) ) |
| 221 | 211 213 | remulcld | |- ( ph -> ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) e. RR ) |
| 222 | 22 | absge0d | |- ( ph -> 0 <_ ( abs ` ( X ., Y ) ) ) |
| 223 | 166 207 | sqrtge0d | |- ( ph -> 0 <_ ( sqrt ` ( X ., X ) ) ) |
| 224 | 29 192 | sqrtge0d | |- ( ph -> 0 <_ ( sqrt ` ( Y ., Y ) ) ) |
| 225 | 211 213 223 224 | mulge0d | |- ( ph -> 0 <_ ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) ) |
| 226 | 172 221 222 225 | le2sqd | |- ( ph -> ( ( abs ` ( X ., Y ) ) <_ ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) <-> ( ( abs ` ( X ., Y ) ) ^ 2 ) <_ ( ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) ^ 2 ) ) ) |
| 227 | 220 226 | mpbird | |- ( ph -> ( abs ` ( X ., Y ) ) <_ ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) ) |
| 228 | lmodgrp | |- ( W e. LMod -> W e. Grp ) |
|
| 229 | 51 228 | syl | |- ( ph -> W e. Grp ) |
| 230 | 1 10 2 6 | tcphnmval | |- ( ( W e. Grp /\ X e. V ) -> ( N ` X ) = ( sqrt ` ( X ., X ) ) ) |
| 231 | 229 12 230 | syl2anc | |- ( ph -> ( N ` X ) = ( sqrt ` ( X ., X ) ) ) |
| 232 | 1 10 2 6 | tcphnmval | |- ( ( W e. Grp /\ Y e. V ) -> ( N ` Y ) = ( sqrt ` ( Y ., Y ) ) ) |
| 233 | 229 13 232 | syl2anc | |- ( ph -> ( N ` Y ) = ( sqrt ` ( Y ., Y ) ) ) |
| 234 | 231 233 | oveq12d | |- ( ph -> ( ( N ` X ) x. ( N ` Y ) ) = ( ( sqrt ` ( X ., X ) ) x. ( sqrt ` ( Y ., Y ) ) ) ) |
| 235 | 227 234 | breqtrrd | |- ( ph -> ( abs ` ( X ., Y ) ) <_ ( ( N ` X ) x. ( N ` Y ) ) ) |