This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cphreccl . (Contributed by Mario Carneiro, 8-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsubrglem.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| cphsubrglem.1 | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐴 ) ) | ||
| cphsubrglem.2 | ⊢ ( 𝜑 → 𝐹 ∈ DivRing ) | ||
| Assertion | cphreccllem | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 1 / 𝑋 ) ∈ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsubrglem.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 2 | cphsubrglem.1 | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐴 ) ) | |
| 3 | cphsubrglem.2 | ⊢ ( 𝜑 → 𝐹 ∈ DivRing ) | |
| 4 | 1 2 3 | cphsubrglem | ⊢ ( 𝜑 → ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 = ( 𝐴 ∩ ℂ ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) |
| 5 | 4 | simp3d | ⊢ ( 𝜑 → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 7 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 8 | 7 | subrgss | ⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ ) |
| 9 | 6 8 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝐾 ⊆ ℂ ) |
| 10 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐾 ) | |
| 11 | 9 10 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ℂ ) |
| 12 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) | |
| 13 | cnfldinv | ⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) ) | |
| 14 | 11 12 13 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) ) |
| 15 | eqid | ⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) | |
| 16 | cnfld0 | ⊢ 0 = ( 0g ‘ ℂfld ) | |
| 17 | 15 16 | subrg0 | ⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 18 | 6 17 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 0 = ( 0g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 19 | 4 | simp1d | ⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 20 | 19 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 21 | 20 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 0g ‘ 𝐹 ) = ( 0g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 22 | 18 21 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 0 = ( 0g ‘ 𝐹 ) ) |
| 23 | 12 22 | neeqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ ( 0g ‘ 𝐹 ) ) |
| 24 | eldifsn | ⊢ ( 𝑋 ∈ ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ↔ ( 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ ( 0g ‘ 𝐹 ) ) ) | |
| 25 | 10 23 24 | sylanbrc | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) |
| 26 | 3 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝐹 ∈ DivRing ) |
| 27 | eqid | ⊢ ( Unit ‘ 𝐹 ) = ( Unit ‘ 𝐹 ) | |
| 28 | eqid | ⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) | |
| 29 | 1 27 28 | isdrng | ⊢ ( 𝐹 ∈ DivRing ↔ ( 𝐹 ∈ Ring ∧ ( Unit ‘ 𝐹 ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) ) |
| 30 | 29 | simprbi | ⊢ ( 𝐹 ∈ DivRing → ( Unit ‘ 𝐹 ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) |
| 31 | 26 30 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( Unit ‘ 𝐹 ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) |
| 32 | 20 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( Unit ‘ 𝐹 ) = ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 33 | 31 32 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) = ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 34 | 25 33 | eleqtrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 35 | eqid | ⊢ ( Unit ‘ ℂfld ) = ( Unit ‘ ℂfld ) | |
| 36 | eqid | ⊢ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) = ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) | |
| 37 | eqid | ⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) | |
| 38 | 15 35 36 37 | subrgunit | ⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → ( 𝑋 ∈ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ↔ ( 𝑋 ∈ ( Unit ‘ ℂfld ) ∧ 𝑋 ∈ 𝐾 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑋 ) ∈ 𝐾 ) ) ) |
| 39 | 6 38 | syl | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 𝑋 ∈ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ↔ ( 𝑋 ∈ ( Unit ‘ ℂfld ) ∧ 𝑋 ∈ 𝐾 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑋 ) ∈ 𝐾 ) ) ) |
| 40 | 34 39 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 𝑋 ∈ ( Unit ‘ ℂfld ) ∧ 𝑋 ∈ 𝐾 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑋 ) ∈ 𝐾 ) ) |
| 41 | 40 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) ∈ 𝐾 ) |
| 42 | 14 41 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 1 / 𝑋 ) ∈ 𝐾 ) |