This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtraction in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| clmsub.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | clmsub | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | clmsub.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | 1 2 | clmsubrg | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 4 | subrgsubg | ⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) |
| 6 | cnfldsub | ⊢ − = ( -g ‘ ℂfld ) | |
| 7 | eqid | ⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) | |
| 8 | eqid | ⊢ ( -g ‘ ( ℂfld ↾s 𝐾 ) ) = ( -g ‘ ( ℂfld ↾s 𝐾 ) ) | |
| 9 | 6 7 8 | subgsub | ⊢ ( ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 ( -g ‘ ( ℂfld ↾s 𝐾 ) ) 𝐵 ) ) |
| 10 | 5 9 | syl3an1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 ( -g ‘ ( ℂfld ↾s 𝐾 ) ) 𝐵 ) ) |
| 11 | 1 2 | clmsca | ⊢ ( 𝑊 ∈ ℂMod → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 12 | 11 | fveq2d | ⊢ ( 𝑊 ∈ ℂMod → ( -g ‘ 𝐹 ) = ( -g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( -g ‘ 𝐹 ) = ( -g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 14 | 13 | oveqd | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) = ( 𝐴 ( -g ‘ ( ℂfld ↾s 𝐾 ) ) 𝐵 ) ) |
| 15 | 10 14 | eqtr4d | ⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾 ) → ( 𝐴 − 𝐵 ) = ( 𝐴 ( -g ‘ 𝐹 ) 𝐵 ) ) |