This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for inner product. Equation I2 of Ponnusamy p. 363. (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| ipdir.f | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| ipass.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| ipass.p | ⊢ × = ( .r ‘ 𝐹 ) | ||
| Assertion | ipass | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐵 ) , 𝐶 ) = ( 𝐴 × ( 𝐵 , 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | ipdir.f | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | ipass.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | ipass.p | ⊢ × = ( .r ‘ 𝐹 ) | |
| 7 | eqid | ⊢ ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) = ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) | |
| 8 | 1 2 3 7 | phllmhm | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐶 ∈ 𝑉 ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
| 9 | 8 | 3ad2antr3 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ) |
| 10 | simpr1 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ 𝐾 ) | |
| 11 | simpr2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) | |
| 12 | rlmvsca | ⊢ ( .r ‘ 𝐹 ) = ( ·𝑠 ‘ ( ringLMod ‘ 𝐹 ) ) | |
| 13 | 6 12 | eqtri | ⊢ × = ( ·𝑠 ‘ ( ringLMod ‘ 𝐹 ) ) |
| 14 | 1 4 3 5 13 | lmhmlin | ⊢ ( ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ∈ ( 𝑊 LMHom ( ringLMod ‘ 𝐹 ) ) ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 × ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) ) ) |
| 15 | 9 10 11 14 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ ( 𝐴 · 𝐵 ) ) = ( 𝐴 × ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) ) ) |
| 16 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝑊 ∈ LMod ) |
| 18 | 3 1 5 4 | lmodvscl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 · 𝐵 ) ∈ 𝑉 ) |
| 19 | 17 10 11 18 | syl3anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 · 𝐵 ) ∈ 𝑉 ) |
| 20 | oveq1 | ⊢ ( 𝑥 = ( 𝐴 · 𝐵 ) → ( 𝑥 , 𝐶 ) = ( ( 𝐴 · 𝐵 ) , 𝐶 ) ) | |
| 21 | ovex | ⊢ ( 𝑥 , 𝐶 ) ∈ V | |
| 22 | 20 7 21 | fvmpt3i | ⊢ ( ( 𝐴 · 𝐵 ) ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ ( 𝐴 · 𝐵 ) ) = ( ( 𝐴 · 𝐵 ) , 𝐶 ) ) |
| 23 | 19 22 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ ( 𝐴 · 𝐵 ) ) = ( ( 𝐴 · 𝐵 ) , 𝐶 ) ) |
| 24 | oveq1 | ⊢ ( 𝑥 = 𝐵 → ( 𝑥 , 𝐶 ) = ( 𝐵 , 𝐶 ) ) | |
| 25 | 24 7 21 | fvmpt3i | ⊢ ( 𝐵 ∈ 𝑉 → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) = ( 𝐵 , 𝐶 ) ) |
| 26 | 11 25 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) = ( 𝐵 , 𝐶 ) ) |
| 27 | 26 | oveq2d | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 × ( ( 𝑥 ∈ 𝑉 ↦ ( 𝑥 , 𝐶 ) ) ‘ 𝐵 ) ) = ( 𝐴 × ( 𝐵 , 𝐶 ) ) ) |
| 28 | 15 23 27 | 3eqtr3d | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 · 𝐵 ) , 𝐶 ) = ( 𝐴 × ( 𝐵 , 𝐶 ) ) ) |