This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: *r is unaffected by restriction. (Contributed by Mario Carneiro, 9-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressmulr.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| ressstarv.2 | ⊢ ∗ = ( *𝑟 ‘ 𝑅 ) | ||
| Assertion | ressstarv | ⊢ ( 𝐴 ∈ 𝑉 → ∗ = ( *𝑟 ‘ 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressmulr.1 | ⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) | |
| 2 | ressstarv.2 | ⊢ ∗ = ( *𝑟 ‘ 𝑅 ) | |
| 3 | starvid | ⊢ *𝑟 = Slot ( *𝑟 ‘ ndx ) | |
| 4 | starvndxnbasendx | ⊢ ( *𝑟 ‘ ndx ) ≠ ( Base ‘ ndx ) | |
| 5 | 1 2 3 4 | resseqnbas | ⊢ ( 𝐴 ∈ 𝑉 → ∗ = ( *𝑟 ‘ 𝑆 ) ) |