This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inner product with a zero second argument. (Contributed by NM, 5-Feb-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| ip0l.z | ⊢ 𝑍 = ( 0g ‘ 𝐹 ) | ||
| ip0l.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | ip0r | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 0 ) = 𝑍 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | ip0l.z | ⊢ 𝑍 = ( 0g ‘ 𝐹 ) | |
| 5 | ip0l.o | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 6 | 1 2 3 4 5 | ip0l | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( 0 , 𝐴 ) = 𝑍 ) |
| 7 | 6 | fveq2d | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 0 , 𝐴 ) ) = ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) ) |
| 8 | phllmod | ⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → 𝑊 ∈ LMod ) |
| 10 | 3 5 | lmod0vcl | ⊢ ( 𝑊 ∈ LMod → 0 ∈ 𝑉 ) |
| 11 | 9 10 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → 0 ∈ 𝑉 ) |
| 12 | eqid | ⊢ ( *𝑟 ‘ 𝐹 ) = ( *𝑟 ‘ 𝐹 ) | |
| 13 | 1 2 3 12 | ipcj | ⊢ ( ( 𝑊 ∈ PreHil ∧ 0 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 0 , 𝐴 ) ) = ( 𝐴 , 0 ) ) |
| 14 | 13 | 3expa | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 0 ∈ 𝑉 ) ∧ 𝐴 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 0 , 𝐴 ) ) = ( 𝐴 , 0 ) ) |
| 15 | 14 | an32s | ⊢ ( ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) ∧ 0 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 0 , 𝐴 ) ) = ( 𝐴 , 0 ) ) |
| 16 | 11 15 | mpdan | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ ( 0 , 𝐴 ) ) = ( 𝐴 , 0 ) ) |
| 17 | 1 | phlsrng | ⊢ ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring ) |
| 18 | 17 | adantr | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → 𝐹 ∈ *-Ring ) |
| 19 | 12 4 | srng0 | ⊢ ( 𝐹 ∈ *-Ring → ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) = 𝑍 ) |
| 20 | 18 19 | syl | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( *𝑟 ‘ 𝐹 ) ‘ 𝑍 ) = 𝑍 ) |
| 21 | 7 16 20 | 3eqtr3d | ⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 0 ) = 𝑍 ) |