This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar ring of a subcomplex module is a subset of the complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| clmsub.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | clmsscn | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clm0.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | clmsub.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | 1 2 | clmsubrg | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 4 | cnfldbas | ⊢ ℂ = ( Base ‘ ℂfld ) | |
| 5 | 4 | subrgss | ⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ ) |
| 6 | 3 5 | syl | ⊢ ( 𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ ) |