This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero nonnegative number is positive. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ne0gt0d.2 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| ne0gt0d.3 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
| Assertion | ne0gt0d | ⊢ ( 𝜑 → 0 < 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ne0gt0d.2 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 3 | ne0gt0d.3 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
| 4 | ne0gt0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( 𝐴 ≠ 0 ↔ 0 < 𝐴 ) ) | |
| 5 | 1 2 4 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ≠ 0 ↔ 0 < 𝐴 ) ) |
| 6 | 3 5 | mpbid | ⊢ ( 𝜑 → 0 < 𝐴 ) |