This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Associative" law for inner product. Conjugate version of ipassr . (Contributed by NM, 25-Aug-2007) (Revised by Mario Carneiro, 7-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | ||
| phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| ipdir.f | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| ipass.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| ipass.p | ⊢ × = ( .r ‘ 𝐹 ) | ||
| ipassr.i | ⊢ ∗ = ( *𝑟 ‘ 𝐹 ) | ||
| Assertion | ipassr2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ( 𝐴 , 𝐵 ) × 𝐶 ) = ( 𝐴 , ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | phlsrng.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | phllmhm.h | ⊢ , = ( ·𝑖 ‘ 𝑊 ) | |
| 3 | phllmhm.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | ipdir.f | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 5 | ipass.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 6 | ipass.p | ⊢ × = ( .r ‘ 𝐹 ) | |
| 7 | ipassr.i | ⊢ ∗ = ( *𝑟 ‘ 𝐹 ) | |
| 8 | simpl | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝑊 ∈ PreHil ) | |
| 9 | simpr1 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝐴 ∈ 𝑉 ) | |
| 10 | simpr2 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝐵 ∈ 𝑉 ) | |
| 11 | 1 | phlsrng | ⊢ ( 𝑊 ∈ PreHil → 𝐹 ∈ *-Ring ) |
| 12 | simpr3 | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → 𝐶 ∈ 𝐾 ) | |
| 13 | 7 4 | srngcl | ⊢ ( ( 𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾 ) → ( ∗ ‘ 𝐶 ) ∈ 𝐾 ) |
| 14 | 11 12 13 | syl2an2r | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ∗ ‘ 𝐶 ) ∈ 𝐾 ) |
| 15 | 1 2 3 4 5 6 7 | ipassr | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ ( ∗ ‘ 𝐶 ) ∈ 𝐾 ) ) → ( 𝐴 , ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) = ( ( 𝐴 , 𝐵 ) × ( ∗ ‘ ( ∗ ‘ 𝐶 ) ) ) ) |
| 16 | 8 9 10 14 15 | syl13anc | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( 𝐴 , ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) = ( ( 𝐴 , 𝐵 ) × ( ∗ ‘ ( ∗ ‘ 𝐶 ) ) ) ) |
| 17 | 7 4 | srngnvl | ⊢ ( ( 𝐹 ∈ *-Ring ∧ 𝐶 ∈ 𝐾 ) → ( ∗ ‘ ( ∗ ‘ 𝐶 ) ) = 𝐶 ) |
| 18 | 11 12 17 | syl2an2r | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ∗ ‘ ( ∗ ‘ 𝐶 ) ) = 𝐶 ) |
| 19 | 18 | oveq2d | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ( 𝐴 , 𝐵 ) × ( ∗ ‘ ( ∗ ‘ 𝐶 ) ) ) = ( ( 𝐴 , 𝐵 ) × 𝐶 ) ) |
| 20 | 16 19 | eqtr2d | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝐾 ) ) → ( ( 𝐴 , 𝐵 ) × 𝐶 ) = ( 𝐴 , ( ( ∗ ‘ 𝐶 ) · 𝐵 ) ) ) |