This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for htth . The collection K , which consists of functions F ( z ) ( w ) = <. w | T ( z ) >. = <. T ( w ) | z >. for each z in the unit ball, is a collection of bounded linear functions by ipblnfi , so by the Uniform Boundedness theorem ubth , there is a uniform bound y on || F ( x ) || for all x in the unit ball. Then | T ( x ) | ^ 2 = <. T ( x ) | T ( x ) >. = F ( x ) ( T ( x ) ) <_ y | T ( x ) | , so | T ( x ) | <_ y and T is bounded. (Contributed by NM, 11-Jan-2008) (Revised by Mario Carneiro, 23-Aug-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | htth.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| htth.2 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| htth.3 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑈 ) | ||
| htth.4 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑈 ) | ||
| htthlem.5 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| htthlem.6 | ⊢ 𝑈 ∈ CHilOLD | ||
| htthlem.7 | ⊢ 𝑊 = 〈 〈 + , · 〉 , abs 〉 | ||
| htthlem.8 | ⊢ ( 𝜑 → 𝑇 ∈ 𝐿 ) | ||
| htthlem.9 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) | ||
| htthlem.10 | ⊢ 𝐹 = ( 𝑧 ∈ 𝑋 ↦ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) ) | ||
| htthlem.11 | ⊢ 𝐾 = ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) | ||
| Assertion | htthlem | ⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | htth.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | htth.2 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 3 | htth.3 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑈 ) | |
| 4 | htth.4 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑈 ) | |
| 5 | htthlem.5 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 6 | htthlem.6 | ⊢ 𝑈 ∈ CHilOLD | |
| 7 | htthlem.7 | ⊢ 𝑊 = 〈 〈 + , · 〉 , abs 〉 | |
| 8 | htthlem.8 | ⊢ ( 𝜑 → 𝑇 ∈ 𝐿 ) | |
| 9 | htthlem.9 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) | |
| 10 | htthlem.10 | ⊢ 𝐹 = ( 𝑧 ∈ 𝑋 ↦ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) ) | |
| 11 | htthlem.11 | ⊢ 𝐾 = ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) | |
| 12 | 6 | hlnvi | ⊢ 𝑈 ∈ NrmCVec |
| 13 | 1 1 3 | lnof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ 𝑋 ) |
| 14 | 12 12 13 | mp3an12 | ⊢ ( 𝑇 ∈ 𝐿 → 𝑇 : 𝑋 ⟶ 𝑋 ) |
| 15 | 8 14 | syl | ⊢ ( 𝜑 → 𝑇 : 𝑋 ⟶ 𝑋 ) |
| 16 | 15 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) |
| 17 | 1 5 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 18 | 12 16 17 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 19 | 15 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑇 ‘ 𝑧 ) ∈ 𝑋 ) |
| 20 | hlph | ⊢ ( 𝑈 ∈ CHilOLD → 𝑈 ∈ CPreHilOLD ) | |
| 21 | 6 20 | ax-mp | ⊢ 𝑈 ∈ CPreHilOLD |
| 22 | eqid | ⊢ ( 𝑈 BLnOp 𝑊 ) = ( 𝑈 BLnOp 𝑊 ) | |
| 23 | eqid | ⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) | |
| 24 | 1 2 21 7 22 23 | ipblnfi | ⊢ ( ( 𝑇 ‘ 𝑧 ) ∈ 𝑋 → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) ∈ ( 𝑈 BLnOp 𝑊 ) ) |
| 25 | 19 24 | syl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) ∈ ( 𝑈 BLnOp 𝑊 ) ) |
| 26 | 25 10 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ ( 𝑈 BLnOp 𝑊 ) ) |
| 27 | 26 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 28 | 27 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → Fun 𝐹 ) |
| 29 | id | ⊢ ( 𝑤 ∈ 𝐾 → 𝑤 ∈ 𝐾 ) | |
| 30 | 29 11 | eleqtrdi | ⊢ ( 𝑤 ∈ 𝐾 → 𝑤 ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) |
| 31 | fvelima | ⊢ ( ( Fun 𝐹 ∧ 𝑤 ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) → ∃ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ( 𝐹 ‘ 𝑦 ) = 𝑤 ) | |
| 32 | 28 30 31 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝐾 ) → ∃ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ( 𝐹 ‘ 𝑦 ) = 𝑤 ) |
| 33 | 32 | ex | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑤 ∈ 𝐾 → ∃ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ( 𝐹 ‘ 𝑦 ) = 𝑤 ) ) |
| 34 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑁 ‘ 𝑧 ) = ( 𝑁 ‘ 𝑦 ) ) | |
| 35 | 34 | breq1d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑁 ‘ 𝑧 ) ≤ 1 ↔ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) |
| 36 | 35 | elrab | ⊢ ( 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ↔ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) |
| 37 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑦 ) ) | |
| 38 | 37 | oveq2d | ⊢ ( 𝑧 = 𝑦 → ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) = ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
| 39 | 38 | mpteq2dv | ⊢ ( 𝑧 = 𝑦 → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 40 | 39 10 1 | mptfvmpt | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝐹 ‘ 𝑦 ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 41 | 40 | fveq1d | ⊢ ( 𝑦 ∈ 𝑋 → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) ‘ 𝑥 ) ) |
| 42 | oveq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) | |
| 43 | eqid | ⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) | |
| 44 | ovex | ⊢ ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ∈ V | |
| 45 | 42 43 44 | fvmpt | ⊢ ( 𝑥 ∈ 𝑋 → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) ‘ 𝑥 ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
| 46 | 41 45 | sylan9eqr | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
| 47 | 46 | ad2ant2lr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) ) |
| 48 | rsp2 | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ) | |
| 49 | 9 48 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ) |
| 50 | 49 | impl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ 𝑋 ) → ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) |
| 51 | 50 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( 𝑥 𝑃 ( 𝑇 ‘ 𝑦 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) |
| 52 | 47 51 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) |
| 53 | 52 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) = ( abs ‘ ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ) |
| 54 | simpl | ⊢ ( ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) → 𝑦 ∈ 𝑋 ) | |
| 55 | 1 2 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ∈ ℂ ) |
| 56 | 12 55 | mp3an1 | ⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ∈ ℂ ) |
| 57 | 16 54 56 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ∈ ℂ ) |
| 58 | 57 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ∈ ℝ ) |
| 59 | 18 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 60 | 1 5 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑦 ∈ 𝑋 ) → ( 𝑁 ‘ 𝑦 ) ∈ ℝ ) |
| 61 | 12 60 | mpan | ⊢ ( 𝑦 ∈ 𝑋 → ( 𝑁 ‘ 𝑦 ) ∈ ℝ ) |
| 62 | 61 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( 𝑁 ‘ 𝑦 ) ∈ ℝ ) |
| 63 | 59 62 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ∈ ℝ ) |
| 64 | 1 5 2 21 | sii | ⊢ ( ( ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( abs ‘ ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ≤ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ) |
| 65 | 16 54 64 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ≤ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ) |
| 66 | 1red | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → 1 ∈ ℝ ) | |
| 67 | 1 5 | nvge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 68 | 12 16 67 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 69 | 18 68 | jca | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 70 | 69 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 71 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( 𝑁 ‘ 𝑦 ) ≤ 1 ) | |
| 72 | lemul2a | ⊢ ( ( ( ( 𝑁 ‘ 𝑦 ) ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ≤ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · 1 ) ) | |
| 73 | 62 66 70 71 72 | syl31anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ≤ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · 1 ) ) |
| 74 | 59 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℂ ) |
| 75 | 74 | mulridd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · 1 ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 76 | 73 75 | breqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ 𝑦 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 77 | 58 63 59 65 76 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( ( 𝑇 ‘ 𝑥 ) 𝑃 𝑦 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 78 | 53 77 | eqbrtrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ ( 𝑦 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑦 ) ≤ 1 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 79 | 36 78 | sylan2b | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 80 | fveq1 | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) = ( 𝑤 ‘ 𝑥 ) ) | |
| 81 | 80 | fveq2d | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) = ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ) |
| 82 | 81 | breq1d | ⊢ ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( ( abs ‘ ( ( 𝐹 ‘ 𝑦 ) ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 83 | 79 82 | syl5ibcom | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) ∧ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) → ( ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 84 | 83 | rexlimdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ∃ 𝑦 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ( 𝐹 ‘ 𝑦 ) = 𝑤 → ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 85 | 33 84 | syld | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑤 ∈ 𝐾 → ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 86 | 85 | ralrimiv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 87 | brralrspcev | ⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ) | |
| 88 | 18 86 87 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ) |
| 89 | 88 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ) |
| 90 | imassrn | ⊢ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ⊆ ran 𝐹 | |
| 91 | 11 90 | eqsstri | ⊢ 𝐾 ⊆ ran 𝐹 |
| 92 | 26 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 𝑈 BLnOp 𝑊 ) ) |
| 93 | 91 92 | sstrid | ⊢ ( 𝜑 → 𝐾 ⊆ ( 𝑈 BLnOp 𝑊 ) ) |
| 94 | hlobn | ⊢ ( 𝑈 ∈ CHilOLD → 𝑈 ∈ CBan ) | |
| 95 | 6 94 | ax-mp | ⊢ 𝑈 ∈ CBan |
| 96 | 7 | cnnv | ⊢ 𝑊 ∈ NrmCVec |
| 97 | 7 | cnnvnm | ⊢ abs = ( normCV ‘ 𝑊 ) |
| 98 | eqid | ⊢ ( 𝑈 normOpOLD 𝑊 ) = ( 𝑈 normOpOLD 𝑊 ) | |
| 99 | 1 97 98 | ubth | ⊢ ( ( 𝑈 ∈ CBan ∧ 𝑊 ∈ NrmCVec ∧ 𝐾 ⊆ ( 𝑈 BLnOp 𝑊 ) ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
| 100 | 95 96 99 | mp3an12 | ⊢ ( 𝐾 ⊆ ( 𝑈 BLnOp 𝑊 ) → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
| 101 | 93 100 | syl | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑋 ∃ 𝑧 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( abs ‘ ( 𝑤 ‘ 𝑥 ) ) ≤ 𝑧 ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 ) ) |
| 102 | 89 101 | mpbid | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 ) |
| 103 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) | |
| 104 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑁 ‘ 𝑧 ) = ( 𝑁 ‘ 𝑥 ) ) | |
| 105 | 104 | breq1d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑁 ‘ 𝑧 ) ≤ 1 ↔ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) |
| 106 | 105 | elrab | ⊢ ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ↔ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) |
| 107 | 103 106 | sylibr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) |
| 108 | 10 25 | dmmptd | ⊢ ( 𝜑 → dom 𝐹 = 𝑋 ) |
| 109 | 108 | eleq2d | ⊢ ( 𝜑 → ( 𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝑋 ) ) |
| 110 | 109 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ dom 𝐹 ) |
| 111 | funfvima | ⊢ ( ( Fun 𝐹 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) ) | |
| 112 | 27 111 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) ) |
| 113 | 110 112 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) ) |
| 114 | 113 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( 𝑥 ∈ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) ) |
| 115 | 107 114 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝐹 “ { 𝑧 ∈ 𝑋 ∣ ( 𝑁 ‘ 𝑧 ) ≤ 1 } ) ) |
| 116 | 115 11 | eleqtrrdi | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐾 ) |
| 117 | fveq2 | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) = ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 118 | 117 | breq1d | ⊢ ( 𝑤 = ( 𝐹 ‘ 𝑥 ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 ↔ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 119 | 118 | rspcv | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ 𝐾 → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 120 | 116 119 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 121 | 18 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) |
| 122 | 121 121 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 123 | 26 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) ) |
| 124 | 7 | cnnvba | ⊢ ℂ = ( BaseSet ‘ 𝑊 ) |
| 125 | 1 124 98 22 | nmblore | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 126 | 12 96 125 | mp3an12 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 127 | 123 126 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 128 | 127 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 129 | 128 121 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 130 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → 𝑦 ∈ ℝ ) | |
| 131 | 130 121 | remulcld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ∈ ℝ ) |
| 132 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑇 ‘ 𝑧 ) = ( 𝑇 ‘ 𝑥 ) ) | |
| 133 | 132 | oveq2d | ⊢ ( 𝑧 = 𝑥 → ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) = ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
| 134 | 133 | mpteq2dv | ⊢ ( 𝑧 = 𝑥 → ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑧 ) ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 135 | 134 10 1 | mptfvmpt | ⊢ ( 𝑥 ∈ 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 136 | 135 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 137 | 136 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 138 | oveq1 | ⊢ ( 𝑤 = ( 𝑇 ‘ 𝑥 ) → ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) | |
| 139 | eqid | ⊢ ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) = ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) | |
| 140 | ovex | ⊢ ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ∈ V | |
| 141 | 138 139 140 | fvmpt | ⊢ ( ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
| 142 | 16 141 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑤 ∈ 𝑋 ↦ ( 𝑤 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
| 143 | 137 142 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
| 144 | 143 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) ) |
| 145 | 16 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) |
| 146 | 1 5 2 | ipidsq | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) → ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 147 | 12 145 146 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑇 ‘ 𝑥 ) 𝑃 ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 148 | 144 147 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 149 | 148 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) = ( abs ‘ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) ) |
| 150 | resqcl | ⊢ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ∈ ℝ ) | |
| 151 | sqge0 | ⊢ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ → 0 ≤ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) | |
| 152 | 150 151 | absidd | ⊢ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ → ( abs ‘ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 153 | 121 152 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( abs ‘ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) ) |
| 154 | 121 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℂ ) |
| 155 | 154 | sqvald | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 156 | 149 153 155 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) = ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 157 | 123 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) ) |
| 158 | 1 5 97 98 22 12 96 | nmblolbi | ⊢ ( ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) ∧ ( 𝑇 ‘ 𝑥 ) ∈ 𝑋 ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 159 | 157 145 158 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑥 ) ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 160 | 156 159 | eqbrtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 161 | 12 145 67 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) |
| 162 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) | |
| 163 | 128 130 121 161 162 | lemul1ad | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 164 | 122 129 131 160 163 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 165 | lemul1 | ⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ↔ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) | |
| 166 | 165 | biimprd | ⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 167 | 166 | 3expia | ⊢ ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 168 | 167 | expdimp | ⊢ ( ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) → ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 169 | 121 130 121 168 | syl21anc | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ≤ ( 𝑦 · ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 170 | 164 169 | mpid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 171 | 0red | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → 0 ∈ ℝ ) | |
| 172 | 1 124 22 | blof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) ) → ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ ) |
| 173 | 12 96 172 | mp3an12 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 𝑈 BLnOp 𝑊 ) → ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ ) |
| 174 | 123 173 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ ) |
| 175 | 174 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ ) |
| 176 | 1 124 98 | nmooge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ ) → 0 ≤ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 177 | 12 96 176 | mp3an12 | ⊢ ( ( 𝐹 ‘ 𝑥 ) : 𝑋 ⟶ ℂ → 0 ≤ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 178 | 175 177 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → 0 ≤ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 179 | 171 128 130 178 162 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → 0 ≤ 𝑦 ) |
| 180 | breq1 | ⊢ ( 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( 0 ≤ 𝑦 ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) | |
| 181 | 179 180 | syl5ibcom | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 182 | 0re | ⊢ 0 ∈ ℝ | |
| 183 | leloe | ⊢ ( ( 0 ∈ ℝ ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∈ ℝ ) → ( 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∨ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) | |
| 184 | 182 121 183 | sylancr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 0 ≤ ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ↔ ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∨ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) ) |
| 185 | 161 184 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 0 < ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ∨ 0 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ) ) |
| 186 | 170 181 185 | mpjaod | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 ) ) → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) |
| 187 | 186 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 188 | 187 | adantrr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( ( ( 𝑈 normOpOLD 𝑊 ) ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 189 | 120 188 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ ( 𝑥 ∈ 𝑋 ∧ ( 𝑁 ‘ 𝑥 ) ≤ 1 ) ) → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 190 | 189 | expr | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 191 | 190 | com23 | ⊢ ( ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) ∧ 𝑥 ∈ 𝑋 ) → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 192 | 191 | ralrimdva | ⊢ ( ( 𝜑 ∧ 𝑦 ∈ ℝ ) → ( ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 193 | 192 | reximdva | ⊢ ( 𝜑 → ( ∃ 𝑦 ∈ ℝ ∀ 𝑤 ∈ 𝐾 ( ( 𝑈 normOpOLD 𝑊 ) ‘ 𝑤 ) ≤ 𝑦 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 194 | 102 193 | mpd | ⊢ ( 𝜑 → ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) |
| 195 | eqid | ⊢ ( 𝑈 normOpOLD 𝑈 ) = ( 𝑈 normOpOLD 𝑈 ) | |
| 196 | 1 1 5 5 195 12 12 | nmobndi | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑋 → ( ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 197 | 15 196 | syl | ⊢ ( 𝜑 → ( ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) ∈ ℝ ↔ ∃ 𝑦 ∈ ℝ ∀ 𝑥 ∈ 𝑋 ( ( 𝑁 ‘ 𝑥 ) ≤ 1 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ 𝑦 ) ) ) |
| 198 | 194 197 | mpbird | ⊢ ( 𝜑 → ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) ∈ ℝ ) |
| 199 | ltpnf | ⊢ ( ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) ∈ ℝ → ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) < +∞ ) | |
| 200 | 198 199 | syl | ⊢ ( 𝜑 → ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) < +∞ ) |
| 201 | 195 3 4 | isblo | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑈 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) < +∞ ) ) ) |
| 202 | 12 12 201 | mp2an | ⊢ ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( ( 𝑈 normOpOLD 𝑈 ) ‘ 𝑇 ) < +∞ ) ) |
| 203 | 8 200 202 | sylanbrc | ⊢ ( 𝜑 → 𝑇 ∈ 𝐵 ) |