This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear operator is a mapping. (Contributed by NM, 4-Dec-2007) (Revised by Mario Carneiro, 18-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lnof.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| lnof.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| lnof.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| Assertion | lnof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnof.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | lnof.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | lnof.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 4 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 5 | eqid | ⊢ ( +𝑣 ‘ 𝑊 ) = ( +𝑣 ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 7 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑊 ) = ( ·𝑠OLD ‘ 𝑊 ) | |
| 8 | 1 2 4 5 6 7 3 | islno | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐿 ↔ ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑇 ‘ ( ( 𝑥 ( ·𝑠OLD ‘ 𝑈 ) 𝑦 ) ( +𝑣 ‘ 𝑈 ) 𝑧 ) ) = ( ( 𝑥 ( ·𝑠OLD ‘ 𝑊 ) ( 𝑇 ‘ 𝑦 ) ) ( +𝑣 ‘ 𝑊 ) ( 𝑇 ‘ 𝑧 ) ) ) ) ) |
| 9 | 8 | simprbda | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ 𝑌 ) |
| 10 | 9 | 3impa | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ 𝑌 ) |