This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function F generated by varying the first argument of an inner product (with its second argument a fixed vector A ) is a bounded linear functional, i.e. a bounded linear operator from the vector space to CC . (Contributed by NM, 12-Jan-2008) (Revised by Mario Carneiro, 19-Nov-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipblnfi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ipblnfi.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| ipblnfi.9 | ⊢ 𝑈 ∈ CPreHilOLD | ||
| ipblnfi.c | ⊢ 𝐶 = 〈 〈 + , · 〉 , abs 〉 | ||
| ipblnfi.l | ⊢ 𝐵 = ( 𝑈 BLnOp 𝐶 ) | ||
| ipblnfi.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝑃 𝐴 ) ) | ||
| Assertion | ipblnfi | ⊢ ( 𝐴 ∈ 𝑋 → 𝐹 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipblnfi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ipblnfi.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 3 | ipblnfi.9 | ⊢ 𝑈 ∈ CPreHilOLD | |
| 4 | ipblnfi.c | ⊢ 𝐶 = 〈 〈 + , · 〉 , abs 〉 | |
| 5 | ipblnfi.l | ⊢ 𝐵 = ( 𝑈 BLnOp 𝐶 ) | |
| 6 | ipblnfi.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ ( 𝑥 𝑃 𝐴 ) ) | |
| 7 | 3 | phnvi | ⊢ 𝑈 ∈ NrmCVec |
| 8 | 1 2 | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 𝑃 𝐴 ) ∈ ℂ ) |
| 9 | 7 8 | mp3an1 | ⊢ ( ( 𝑥 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑥 𝑃 𝐴 ) ∈ ℂ ) |
| 10 | 9 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑥 𝑃 𝐴 ) ∈ ℂ ) |
| 11 | 10 6 | fmptd | ⊢ ( 𝐴 ∈ 𝑋 → 𝐹 : 𝑋 ⟶ ℂ ) |
| 12 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 13 | 1 12 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ) |
| 14 | 7 13 | mp3an1 | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ) |
| 15 | 14 | ad2ant2lr | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ) |
| 16 | simprr | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑤 ∈ 𝑋 ) | |
| 17 | simpll | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝐴 ∈ 𝑋 ) | |
| 18 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 19 | 1 18 2 | dipdir | ⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ) → ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) 𝑃 𝐴 ) = ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) 𝑃 𝐴 ) + ( 𝑤 𝑃 𝐴 ) ) ) |
| 20 | 3 19 | mpan | ⊢ ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) 𝑃 𝐴 ) = ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) 𝑃 𝐴 ) + ( 𝑤 𝑃 𝐴 ) ) ) |
| 21 | 15 16 17 20 | syl3anc | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) 𝑃 𝐴 ) = ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) 𝑃 𝐴 ) + ( 𝑤 𝑃 𝐴 ) ) ) |
| 22 | simplr | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑦 ∈ ℂ ) | |
| 23 | simprl | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) | |
| 24 | 1 18 12 2 3 | ipassi | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) 𝑃 𝐴 ) = ( 𝑦 · ( 𝑧 𝑃 𝐴 ) ) ) |
| 25 | 22 23 17 24 | syl3anc | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) 𝑃 𝐴 ) = ( 𝑦 · ( 𝑧 𝑃 𝐴 ) ) ) |
| 26 | 25 | oveq1d | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) 𝑃 𝐴 ) + ( 𝑤 𝑃 𝐴 ) ) = ( ( 𝑦 · ( 𝑧 𝑃 𝐴 ) ) + ( 𝑤 𝑃 𝐴 ) ) ) |
| 27 | 21 26 | eqtrd | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) 𝑃 𝐴 ) = ( ( 𝑦 · ( 𝑧 𝑃 𝐴 ) ) + ( 𝑤 𝑃 𝐴 ) ) ) |
| 28 | 14 | adantll | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 ∈ 𝑋 ) → ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ) |
| 29 | 1 18 | nvgcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ∈ 𝑋 ) |
| 30 | 7 29 | mp3an1 | ⊢ ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ∈ 𝑋 ) |
| 31 | 28 30 | sylan | ⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ∈ 𝑋 ) |
| 32 | 31 | anasss | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ∈ 𝑋 ) |
| 33 | oveq1 | ⊢ ( 𝑥 = ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) → ( 𝑥 𝑃 𝐴 ) = ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) 𝑃 𝐴 ) ) | |
| 34 | ovex | ⊢ ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) 𝑃 𝐴 ) ∈ V | |
| 35 | 33 6 34 | fvmpt | ⊢ ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ∈ 𝑋 → ( 𝐹 ‘ ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ) = ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) 𝑃 𝐴 ) ) |
| 36 | 32 35 | syl | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ) = ( ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) 𝑃 𝐴 ) ) |
| 37 | oveq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 𝑃 𝐴 ) = ( 𝑧 𝑃 𝐴 ) ) | |
| 38 | ovex | ⊢ ( 𝑧 𝑃 𝐴 ) ∈ V | |
| 39 | 37 6 38 | fvmpt | ⊢ ( 𝑧 ∈ 𝑋 → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝑃 𝐴 ) ) |
| 40 | 39 | ad2antrl | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝑃 𝐴 ) ) |
| 41 | 40 | oveq2d | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝑦 · ( 𝐹 ‘ 𝑧 ) ) = ( 𝑦 · ( 𝑧 𝑃 𝐴 ) ) ) |
| 42 | oveq1 | ⊢ ( 𝑥 = 𝑤 → ( 𝑥 𝑃 𝐴 ) = ( 𝑤 𝑃 𝐴 ) ) | |
| 43 | ovex | ⊢ ( 𝑤 𝑃 𝐴 ) ∈ V | |
| 44 | 42 6 43 | fvmpt | ⊢ ( 𝑤 ∈ 𝑋 → ( 𝐹 ‘ 𝑤 ) = ( 𝑤 𝑃 𝐴 ) ) |
| 45 | 44 | ad2antll | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ 𝑤 ) = ( 𝑤 𝑃 𝐴 ) ) |
| 46 | 41 45 | oveq12d | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( ( 𝑦 · ( 𝐹 ‘ 𝑧 ) ) + ( 𝐹 ‘ 𝑤 ) ) = ( ( 𝑦 · ( 𝑧 𝑃 𝐴 ) ) + ( 𝑤 𝑃 𝐴 ) ) ) |
| 47 | 27 36 46 | 3eqtr4d | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑦 · ( 𝐹 ‘ 𝑧 ) ) + ( 𝐹 ‘ 𝑤 ) ) ) |
| 48 | 47 | ralrimivva | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑦 ∈ ℂ ) → ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( 𝐹 ‘ ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑦 · ( 𝐹 ‘ 𝑧 ) ) + ( 𝐹 ‘ 𝑤 ) ) ) |
| 49 | 48 | ralrimiva | ⊢ ( 𝐴 ∈ 𝑋 → ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( 𝐹 ‘ ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑦 · ( 𝐹 ‘ 𝑧 ) ) + ( 𝐹 ‘ 𝑤 ) ) ) |
| 50 | 4 | cnnv | ⊢ 𝐶 ∈ NrmCVec |
| 51 | 4 | cnnvba | ⊢ ℂ = ( BaseSet ‘ 𝐶 ) |
| 52 | 4 | cnnvg | ⊢ + = ( +𝑣 ‘ 𝐶 ) |
| 53 | 4 | cnnvs | ⊢ · = ( ·𝑠OLD ‘ 𝐶 ) |
| 54 | eqid | ⊢ ( 𝑈 LnOp 𝐶 ) = ( 𝑈 LnOp 𝐶 ) | |
| 55 | 1 51 18 52 12 53 54 | islno | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐶 ∈ NrmCVec ) → ( 𝐹 ∈ ( 𝑈 LnOp 𝐶 ) ↔ ( 𝐹 : 𝑋 ⟶ ℂ ∧ ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( 𝐹 ‘ ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑦 · ( 𝐹 ‘ 𝑧 ) ) + ( 𝐹 ‘ 𝑤 ) ) ) ) ) |
| 56 | 7 50 55 | mp2an | ⊢ ( 𝐹 ∈ ( 𝑈 LnOp 𝐶 ) ↔ ( 𝐹 : 𝑋 ⟶ ℂ ∧ ∀ 𝑦 ∈ ℂ ∀ 𝑧 ∈ 𝑋 ∀ 𝑤 ∈ 𝑋 ( 𝐹 ‘ ( ( 𝑦 ( ·𝑠OLD ‘ 𝑈 ) 𝑧 ) ( +𝑣 ‘ 𝑈 ) 𝑤 ) ) = ( ( 𝑦 · ( 𝐹 ‘ 𝑧 ) ) + ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 57 | 11 49 56 | sylanbrc | ⊢ ( 𝐴 ∈ 𝑋 → 𝐹 ∈ ( 𝑈 LnOp 𝐶 ) ) |
| 58 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 59 | 1 58 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ∈ ℝ ) |
| 60 | 7 59 | mpan | ⊢ ( 𝐴 ∈ 𝑋 → ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ∈ ℝ ) |
| 61 | 1 58 2 3 | sii | ⊢ ( ( 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( abs ‘ ( 𝑧 𝑃 𝐴 ) ) ≤ ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ) ) |
| 62 | 61 | ancoms | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( abs ‘ ( 𝑧 𝑃 𝐴 ) ) ≤ ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ) ) |
| 63 | 39 | adantl | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝑧 𝑃 𝐴 ) ) |
| 64 | 63 | fveq2d | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) = ( abs ‘ ( 𝑧 𝑃 𝐴 ) ) ) |
| 65 | 60 | recnd | ⊢ ( 𝐴 ∈ 𝑋 → ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ∈ ℂ ) |
| 66 | 1 58 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑧 ∈ 𝑋 ) → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℝ ) |
| 67 | 7 66 | mpan | ⊢ ( 𝑧 ∈ 𝑋 → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℝ ) |
| 68 | 67 | recnd | ⊢ ( 𝑧 ∈ 𝑋 → ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℂ ) |
| 69 | mulcom | ⊢ ( ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ∈ ℂ ∧ ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ∈ ℂ ) → ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) = ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ) ) | |
| 70 | 65 68 69 | syl2an | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) = ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ) ) |
| 71 | 62 64 70 | 3brtr4d | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 72 | 71 | ralrimiva | ⊢ ( 𝐴 ∈ 𝑋 → ∀ 𝑧 ∈ 𝑋 ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) |
| 73 | 4 | cnnvnm | ⊢ abs = ( normCV ‘ 𝐶 ) |
| 74 | 1 58 73 54 5 7 50 | blo3i | ⊢ ( ( 𝐹 ∈ ( 𝑈 LnOp 𝐶 ) ∧ ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) ∈ ℝ ∧ ∀ 𝑧 ∈ 𝑋 ( abs ‘ ( 𝐹 ‘ 𝑧 ) ) ≤ ( ( ( normCV ‘ 𝑈 ) ‘ 𝐴 ) · ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ) ) → 𝐹 ∈ 𝐵 ) |
| 75 | 57 60 72 74 | syl3anc | ⊢ ( 𝐴 ∈ 𝑋 → 𝐹 ∈ 𝐵 ) |