This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of ipcau as of 22-Sep-2024. Schwarz inequality. Part of Lemma 3-2.1(a) of Kreyszig p. 137. This is also called the Cauchy-Schwarz inequality by some authors and Bunjakovaskij-Cauchy-Schwarz inequality by others. See also Theorems bcseqi , bcsiALT , bcsiHIL , csbren . (Contributed by NM, 12-Jan-2008) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sii.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| sii.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| sii.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| sii.9 | ⊢ 𝑈 ∈ CPreHilOLD | ||
| Assertion | sii | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( abs ‘ ( 𝐴 𝑃 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sii.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | sii.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 3 | sii.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 4 | sii.9 | ⊢ 𝑈 ∈ CPreHilOLD | |
| 5 | fvoveq1 | ⊢ ( 𝐴 = if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) → ( abs ‘ ( 𝐴 𝑃 𝐵 ) ) = ( abs ‘ ( if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) 𝑃 𝐵 ) ) ) | |
| 6 | fveq2 | ⊢ ( 𝐴 = if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) → ( 𝑁 ‘ 𝐴 ) = ( 𝑁 ‘ if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) ) ) | |
| 7 | 6 | oveq1d | ⊢ ( 𝐴 = if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) → ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) = ( ( 𝑁 ‘ if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) ) · ( 𝑁 ‘ 𝐵 ) ) ) |
| 8 | 5 7 | breq12d | ⊢ ( 𝐴 = if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) → ( ( abs ‘ ( 𝐴 𝑃 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ↔ ( abs ‘ ( if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) 𝑃 𝐵 ) ) ≤ ( ( 𝑁 ‘ if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) ) · ( 𝑁 ‘ 𝐵 ) ) ) ) |
| 9 | oveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) → ( if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) 𝑃 𝐵 ) = ( if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) 𝑃 if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) ) | |
| 10 | 9 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) → ( abs ‘ ( if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) 𝑃 𝐵 ) ) = ( abs ‘ ( if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) 𝑃 if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) ) ) |
| 11 | fveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) → ( 𝑁 ‘ 𝐵 ) = ( 𝑁 ‘ if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) ) | |
| 12 | 11 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) → ( ( 𝑁 ‘ if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) ) · ( 𝑁 ‘ 𝐵 ) ) = ( ( 𝑁 ‘ if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) ) · ( 𝑁 ‘ if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) ) ) |
| 13 | 10 12 | breq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) → ( ( abs ‘ ( if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) 𝑃 𝐵 ) ) ≤ ( ( 𝑁 ‘ if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) ) · ( 𝑁 ‘ 𝐵 ) ) ↔ ( abs ‘ ( if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) 𝑃 if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) ) ≤ ( ( 𝑁 ‘ if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) ) · ( 𝑁 ‘ if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) ) ) ) |
| 14 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 15 | 1 14 4 | elimph | ⊢ if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) ∈ 𝑋 |
| 16 | 1 14 4 | elimph | ⊢ if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ∈ 𝑋 |
| 17 | 1 2 3 4 15 16 | siii | ⊢ ( abs ‘ ( if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) 𝑃 if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) ) ≤ ( ( 𝑁 ‘ if ( 𝐴 ∈ 𝑋 , 𝐴 , ( 0vec ‘ 𝑈 ) ) ) · ( 𝑁 ‘ if ( 𝐵 ∈ 𝑋 , 𝐵 , ( 0vec ‘ 𝑈 ) ) ) ) |
| 18 | 8 13 17 | dedth2h | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( abs ‘ ( 𝐴 𝑃 𝐵 ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) · ( 𝑁 ‘ 𝐵 ) ) ) |