This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a normed complex vector space is nonnegative. Second part of Problem 2 of Kreyszig p. 64. (Contributed by NM, 28-Nov-2006) (Proof shortened by AV, 10-Jul-2022) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvge0.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nvge0.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| Assertion | nvge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvge0.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nvge0.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 3 | 2rp | ⊢ 2 ∈ ℝ+ | |
| 4 | 3 | a1i | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 2 ∈ ℝ+ ) |
| 5 | 1 2 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 6 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 7 | 6 2 | nvz0 | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ ( 0vec ‘ 𝑈 ) ) = 0 ) |
| 8 | 7 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 0vec ‘ 𝑈 ) ) = 0 ) |
| 9 | 1pneg1e0 | ⊢ ( 1 + - 1 ) = 0 | |
| 10 | 9 | oveq1i | ⊢ ( ( 1 + - 1 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( 0 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) |
| 11 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 12 | 1 11 6 | nv0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 0 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( 0vec ‘ 𝑈 ) ) |
| 13 | 10 12 | eqtr2id | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 0vec ‘ 𝑈 ) = ( ( 1 + - 1 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) |
| 14 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 15 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 16 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 17 | 1 16 11 | nvdir | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 1 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 1 + - 1 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 18 | 15 17 | mp3anr1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 1 + - 1 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 19 | 14 18 | mpanr1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 + - 1 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 20 | 1 11 | nvsid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = 𝐴 ) |
| 21 | 20 | oveq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 22 | 13 19 21 | 3eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 0vec ‘ 𝑈 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 23 | 22 | fveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 0vec ‘ 𝑈 ) ) = ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ) |
| 24 | 8 23 | eqtr3d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 0 = ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ) |
| 25 | 1 11 | nvscl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ - 1 ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ∈ 𝑋 ) |
| 26 | 14 25 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ∈ 𝑋 ) |
| 27 | 1 16 2 | nvtri | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ) |
| 28 | 26 27 | mpd3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ) |
| 29 | 24 28 | eqbrtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ) |
| 30 | 1 11 2 | nvm1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( 𝑁 ‘ 𝐴 ) ) |
| 31 | 30 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) = ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐴 ) ) ) |
| 32 | 5 | recnd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℂ ) |
| 33 | 32 | 2timesd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 2 · ( 𝑁 ‘ 𝐴 ) ) = ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ 𝐴 ) ) ) |
| 34 | 31 33 | eqtr4d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) + ( 𝑁 ‘ ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) = ( 2 · ( 𝑁 ‘ 𝐴 ) ) ) |
| 35 | 29 34 | breqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 2 · ( 𝑁 ‘ 𝐴 ) ) ) |
| 36 | 4 5 35 | prodge0rd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → 0 ≤ ( 𝑁 ‘ 𝐴 ) ) |