This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The inner product of a vector with itself is the square of the vector's norm. Equation I4 of Ponnusamy p. 362. (Contributed by NM, 1-Feb-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipid.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ipid.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | ||
| ipid.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| Assertion | ipidsq | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐴 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipid.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ipid.6 | ⊢ 𝑁 = ( normCV ‘ 𝑈 ) | |
| 3 | ipid.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 4 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 5 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 6 | 1 4 5 2 3 | ipval2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐴 ) = ( ( ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) ) ) / 4 ) ) |
| 7 | 6 | 3anidm23 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐴 ) = ( ( ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) ) ) / 4 ) ) |
| 8 | 1 4 5 | nv2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝐴 ) = ( 2 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) |
| 9 | 8 | fveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) = ( 𝑁 ‘ ( 2 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 10 | 2re | ⊢ 2 ∈ ℝ | |
| 11 | 0le2 | ⊢ 0 ≤ 2 | |
| 12 | 10 11 | pm3.2i | ⊢ ( 2 ∈ ℝ ∧ 0 ≤ 2 ) |
| 13 | 1 5 2 | nvsge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 2 ∈ ℝ ∧ 0 ≤ 2 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 2 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( 2 · ( 𝑁 ‘ 𝐴 ) ) ) |
| 14 | 12 13 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 2 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( 2 · ( 𝑁 ‘ 𝐴 ) ) ) |
| 15 | 9 14 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) = ( 2 · ( 𝑁 ‘ 𝐴 ) ) ) |
| 16 | 15 | oveq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) ↑ 2 ) = ( ( 2 · ( 𝑁 ‘ 𝐴 ) ) ↑ 2 ) ) |
| 17 | 1 2 | nvcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℝ ) |
| 18 | 17 | recnd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ 𝐴 ) ∈ ℂ ) |
| 19 | 2cn | ⊢ 2 ∈ ℂ | |
| 20 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 21 | mulexp | ⊢ ( ( 2 ∈ ℂ ∧ ( 𝑁 ‘ 𝐴 ) ∈ ℂ ∧ 2 ∈ ℕ0 ) → ( ( 2 · ( 𝑁 ‘ 𝐴 ) ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) | |
| 22 | 19 20 21 | mp3an13 | ⊢ ( ( 𝑁 ‘ 𝐴 ) ∈ ℂ → ( ( 2 · ( 𝑁 ‘ 𝐴 ) ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) |
| 23 | 18 22 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 2 · ( 𝑁 ‘ 𝐴 ) ) ↑ 2 ) = ( ( 2 ↑ 2 ) · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) |
| 24 | sq2 | ⊢ ( 2 ↑ 2 ) = 4 | |
| 25 | 24 | oveq1i | ⊢ ( ( 2 ↑ 2 ) · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) = ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) |
| 26 | 23 25 | eqtrdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 2 · ( 𝑁 ‘ 𝐴 ) ) ↑ 2 ) = ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) |
| 27 | 16 26 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) ↑ 2 ) = ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) |
| 28 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 29 | 1 4 5 28 | nvrinv | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( 0vec ‘ 𝑈 ) ) |
| 30 | 29 | fveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) = ( 𝑁 ‘ ( 0vec ‘ 𝑈 ) ) ) |
| 31 | 28 2 | nvz0 | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ ( 0vec ‘ 𝑈 ) ) = 0 ) |
| 32 | 31 | adantr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 0vec ‘ 𝑈 ) ) = 0 ) |
| 33 | 30 32 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) = 0 ) |
| 34 | 33 | sq0id | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) = 0 ) |
| 35 | 27 34 | oveq12d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) = ( ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) − 0 ) ) |
| 36 | 4cn | ⊢ 4 ∈ ℂ | |
| 37 | 18 | sqcld | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) |
| 38 | mulcl | ⊢ ( ( 4 ∈ ℂ ∧ ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ) → ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) | |
| 39 | 36 37 38 | sylancr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ∈ ℂ ) |
| 40 | 39 | subid1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) − 0 ) = ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) |
| 41 | 35 40 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) = ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) |
| 42 | 1re | ⊢ 1 ∈ ℝ | |
| 43 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 44 | absreim | ⊢ ( ( 1 ∈ ℝ ∧ - 1 ∈ ℝ ) → ( abs ‘ ( 1 + ( i · - 1 ) ) ) = ( √ ‘ ( ( 1 ↑ 2 ) + ( - 1 ↑ 2 ) ) ) ) | |
| 45 | 42 43 44 | mp2an | ⊢ ( abs ‘ ( 1 + ( i · - 1 ) ) ) = ( √ ‘ ( ( 1 ↑ 2 ) + ( - 1 ↑ 2 ) ) ) |
| 46 | ax-icn | ⊢ i ∈ ℂ | |
| 47 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 48 | 46 47 | mulneg2i | ⊢ ( i · - 1 ) = - ( i · 1 ) |
| 49 | 46 | mulridi | ⊢ ( i · 1 ) = i |
| 50 | 49 | negeqi | ⊢ - ( i · 1 ) = - i |
| 51 | 48 50 | eqtri | ⊢ ( i · - 1 ) = - i |
| 52 | 51 | oveq2i | ⊢ ( 1 + ( i · - 1 ) ) = ( 1 + - i ) |
| 53 | 52 | fveq2i | ⊢ ( abs ‘ ( 1 + ( i · - 1 ) ) ) = ( abs ‘ ( 1 + - i ) ) |
| 54 | sqneg | ⊢ ( 1 ∈ ℂ → ( - 1 ↑ 2 ) = ( 1 ↑ 2 ) ) | |
| 55 | 47 54 | ax-mp | ⊢ ( - 1 ↑ 2 ) = ( 1 ↑ 2 ) |
| 56 | 55 | oveq2i | ⊢ ( ( 1 ↑ 2 ) + ( - 1 ↑ 2 ) ) = ( ( 1 ↑ 2 ) + ( 1 ↑ 2 ) ) |
| 57 | 56 | fveq2i | ⊢ ( √ ‘ ( ( 1 ↑ 2 ) + ( - 1 ↑ 2 ) ) ) = ( √ ‘ ( ( 1 ↑ 2 ) + ( 1 ↑ 2 ) ) ) |
| 58 | 45 53 57 | 3eqtr3i | ⊢ ( abs ‘ ( 1 + - i ) ) = ( √ ‘ ( ( 1 ↑ 2 ) + ( 1 ↑ 2 ) ) ) |
| 59 | absreim | ⊢ ( ( 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( abs ‘ ( 1 + ( i · 1 ) ) ) = ( √ ‘ ( ( 1 ↑ 2 ) + ( 1 ↑ 2 ) ) ) ) | |
| 60 | 42 42 59 | mp2an | ⊢ ( abs ‘ ( 1 + ( i · 1 ) ) ) = ( √ ‘ ( ( 1 ↑ 2 ) + ( 1 ↑ 2 ) ) ) |
| 61 | 49 | oveq2i | ⊢ ( 1 + ( i · 1 ) ) = ( 1 + i ) |
| 62 | 61 | fveq2i | ⊢ ( abs ‘ ( 1 + ( i · 1 ) ) ) = ( abs ‘ ( 1 + i ) ) |
| 63 | 58 60 62 | 3eqtr2i | ⊢ ( abs ‘ ( 1 + - i ) ) = ( abs ‘ ( 1 + i ) ) |
| 64 | 63 | oveq1i | ⊢ ( ( abs ‘ ( 1 + - i ) ) · ( 𝑁 ‘ 𝐴 ) ) = ( ( abs ‘ ( 1 + i ) ) · ( 𝑁 ‘ 𝐴 ) ) |
| 65 | negicn | ⊢ - i ∈ ℂ | |
| 66 | 47 65 | addcli | ⊢ ( 1 + - i ) ∈ ℂ |
| 67 | 1 5 2 | nvs | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 1 + - i ) ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 1 + - i ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( ( abs ‘ ( 1 + - i ) ) · ( 𝑁 ‘ 𝐴 ) ) ) |
| 68 | 66 67 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 1 + - i ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( ( abs ‘ ( 1 + - i ) ) · ( 𝑁 ‘ 𝐴 ) ) ) |
| 69 | 47 46 | addcli | ⊢ ( 1 + i ) ∈ ℂ |
| 70 | 1 5 2 | nvs | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 1 + i ) ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 1 + i ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( ( abs ‘ ( 1 + i ) ) · ( 𝑁 ‘ 𝐴 ) ) ) |
| 71 | 69 70 | mp3an2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 1 + i ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( ( abs ‘ ( 1 + i ) ) · ( 𝑁 ‘ 𝐴 ) ) ) |
| 72 | 64 68 71 | 3eqtr4a | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 1 + - i ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( 𝑁 ‘ ( ( 1 + i ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 73 | 1 4 5 | nvdir | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 1 ∈ ℂ ∧ - i ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 1 + - i ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 74 | 47 73 | mp3anr1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( - i ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 1 + - i ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 75 | 65 74 | mpanr1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 + - i ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 76 | 1 5 | nvsid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = 𝐴 ) |
| 77 | 76 | oveq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 78 | 75 77 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 + - i ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 79 | 78 | fveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 1 + - i ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ) |
| 80 | 1 4 5 | nvdir | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 1 ∈ ℂ ∧ i ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 1 + i ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 81 | 47 80 | mp3anr1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( i ∈ ℂ ∧ 𝐴 ∈ 𝑋 ) ) → ( ( 1 + i ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 82 | 46 81 | mpanr1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 + i ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 83 | 76 | oveq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 84 | 82 83 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 1 + i ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) = ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) |
| 85 | 84 | fveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( ( 1 + i ) ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) = ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ) |
| 86 | 72 79 85 | 3eqtr3d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) = ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ) |
| 87 | 86 | oveq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) |
| 88 | 87 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) ) |
| 89 | 1 4 5 2 3 | ipval2lem4 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) ∧ i ∈ ℂ ) → ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 90 | 46 89 | mpan2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 91 | 90 | 3anidm23 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 92 | 91 | subidd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) = 0 ) |
| 93 | 88 92 | eqtrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) = 0 ) |
| 94 | 93 | oveq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( i · ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) ) = ( i · 0 ) ) |
| 95 | it0e0 | ⊢ ( i · 0 ) = 0 | |
| 96 | 94 95 | eqtrdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( i · ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) ) = 0 ) |
| 97 | 41 96 | oveq12d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) ) ) = ( ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) + 0 ) ) |
| 98 | 39 | addridd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) + 0 ) = ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) ) |
| 99 | 97 98 | eqtr2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) = ( ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) ) ) ) |
| 100 | 99 | oveq1d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) / 4 ) = ( ( ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) 𝐴 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - 1 ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( - i ( ·𝑠OLD ‘ 𝑈 ) 𝐴 ) ) ) ↑ 2 ) ) ) ) / 4 ) ) |
| 101 | 4ne0 | ⊢ 4 ≠ 0 | |
| 102 | divcan3 | ⊢ ( ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0 ) → ( ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) / 4 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) | |
| 103 | 36 101 102 | mp3an23 | ⊢ ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ∈ ℂ → ( ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) / 4 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) |
| 104 | 37 103 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( ( 4 · ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) / 4 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) |
| 105 | 7 100 104 | 3eqtr2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐴 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) |