This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 10-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmblolbi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmblolbi.4 | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | ||
| nmblolbi.5 | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | ||
| nmblolbi.6 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| nmblolbi.7 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | ||
| nmblolbi.u | ⊢ 𝑈 ∈ NrmCVec | ||
| nmblolbi.w | ⊢ 𝑊 ∈ NrmCVec | ||
| Assertion | nmblolbi | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( 𝑁 ‘ 𝑇 ) · ( 𝐿 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmblolbi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmblolbi.4 | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | |
| 3 | nmblolbi.5 | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | |
| 4 | nmblolbi.6 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 5 | nmblolbi.7 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | |
| 6 | nmblolbi.u | ⊢ 𝑈 ∈ NrmCVec | |
| 7 | nmblolbi.w | ⊢ 𝑊 ∈ NrmCVec | |
| 8 | fveq1 | ⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) → ( 𝑇 ‘ 𝐴 ) = ( if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ‘ 𝐴 ) ) | |
| 9 | 8 | fveq2d | ⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ‘ 𝐴 ) ) ) |
| 10 | fveq2 | ⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) → ( 𝑁 ‘ 𝑇 ) = ( 𝑁 ‘ if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ) ) | |
| 11 | 10 | oveq1d | ⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) → ( ( 𝑁 ‘ 𝑇 ) · ( 𝐿 ‘ 𝐴 ) ) = ( ( 𝑁 ‘ if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ) · ( 𝐿 ‘ 𝐴 ) ) ) |
| 12 | 9 11 | breq12d | ⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( 𝑁 ‘ 𝑇 ) · ( 𝐿 ‘ 𝐴 ) ) ↔ ( 𝑀 ‘ ( if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ‘ 𝐴 ) ) ≤ ( ( 𝑁 ‘ if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ) · ( 𝐿 ‘ 𝐴 ) ) ) ) |
| 13 | 12 | imbi2d | ⊢ ( 𝑇 = if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) → ( ( 𝐴 ∈ 𝑋 → ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( 𝑁 ‘ 𝑇 ) · ( 𝐿 ‘ 𝐴 ) ) ) ↔ ( 𝐴 ∈ 𝑋 → ( 𝑀 ‘ ( if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ‘ 𝐴 ) ) ≤ ( ( 𝑁 ‘ if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ) · ( 𝐿 ‘ 𝐴 ) ) ) ) ) |
| 14 | eqid | ⊢ ( 𝑈 0op 𝑊 ) = ( 𝑈 0op 𝑊 ) | |
| 15 | 14 5 | 0blo | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑈 0op 𝑊 ) ∈ 𝐵 ) |
| 16 | 6 7 15 | mp2an | ⊢ ( 𝑈 0op 𝑊 ) ∈ 𝐵 |
| 17 | 16 | elimel | ⊢ if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ∈ 𝐵 |
| 18 | 1 2 3 4 5 6 7 17 | nmblolbii | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝑀 ‘ ( if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ‘ 𝐴 ) ) ≤ ( ( 𝑁 ‘ if ( 𝑇 ∈ 𝐵 , 𝑇 , ( 𝑈 0op 𝑊 ) ) ) · ( 𝐿 ‘ 𝐴 ) ) ) |
| 19 | 13 18 | dedth | ⊢ ( 𝑇 ∈ 𝐵 → ( 𝐴 ∈ 𝑋 → ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( 𝑁 ‘ 𝑇 ) · ( 𝐿 ‘ 𝐴 ) ) ) ) |
| 20 | 19 | imp | ⊢ ( ( 𝑇 ∈ 𝐵 ∧ 𝐴 ∈ 𝑋 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( 𝑁 ‘ 𝑇 ) · ( 𝐿 ‘ 𝐴 ) ) ) |