This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of complex numbers is a normed complex vector space. The vector operation is + , the scalar product is x. , and the norm function is abs . (Contributed by Steve Rodriguez, 3-Dec-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cnnv.6 | ⊢ 𝑈 = 〈 〈 + , · 〉 , abs 〉 | |
| Assertion | cnnv | ⊢ 𝑈 ∈ NrmCVec |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnnv.6 | ⊢ 𝑈 = 〈 〈 + , · 〉 , abs 〉 | |
| 2 | cnaddabloOLD | ⊢ + ∈ AbelOp | |
| 3 | ablogrpo | ⊢ ( + ∈ AbelOp → + ∈ GrpOp ) | |
| 4 | 2 3 | ax-mp | ⊢ + ∈ GrpOp |
| 5 | ax-addf | ⊢ + : ( ℂ × ℂ ) ⟶ ℂ | |
| 6 | 5 | fdmi | ⊢ dom + = ( ℂ × ℂ ) |
| 7 | 4 6 | grporn | ⊢ ℂ = ran + |
| 8 | cnidOLD | ⊢ 0 = ( GId ‘ + ) | |
| 9 | cncvcOLD | ⊢ 〈 + , · 〉 ∈ CVecOLD | |
| 10 | absf | ⊢ abs : ℂ ⟶ ℝ | |
| 11 | abs00 | ⊢ ( 𝑥 ∈ ℂ → ( ( abs ‘ 𝑥 ) = 0 ↔ 𝑥 = 0 ) ) | |
| 12 | 11 | biimpa | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( abs ‘ 𝑥 ) = 0 ) → 𝑥 = 0 ) |
| 13 | absmul | ⊢ ( ( 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( abs ‘ ( 𝑦 · 𝑥 ) ) = ( ( abs ‘ 𝑦 ) · ( abs ‘ 𝑥 ) ) ) | |
| 14 | abstri | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ) → ( abs ‘ ( 𝑥 + 𝑦 ) ) ≤ ( ( abs ‘ 𝑥 ) + ( abs ‘ 𝑦 ) ) ) | |
| 15 | 7 8 9 10 12 13 14 1 | isnvi | ⊢ 𝑈 ∈ NrmCVec |