This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a bounded operator is a real number. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmblore.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmblore.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| nmblore.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| nmblore.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | ||
| Assertion | nmblore | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmblore.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmblore.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | nmblore.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 4 | nmblore.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | |
| 5 | 1 2 4 | blof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → 𝑇 : 𝑋 ⟶ 𝑌 ) |
| 6 | 1 2 3 | nmogtmnf | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → -∞ < ( 𝑁 ‘ 𝑇 ) ) |
| 7 | 5 6 | syld3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → -∞ < ( 𝑁 ‘ 𝑇 ) ) |
| 8 | eqid | ⊢ ( 𝑈 LnOp 𝑊 ) = ( 𝑈 LnOp 𝑊 ) | |
| 9 | 3 8 4 | isblo | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ ( 𝑈 LnOp 𝑊 ) ∧ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) ) |
| 10 | 9 | simplbda | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) ∧ 𝑇 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑇 ) < +∞ ) |
| 11 | 10 | 3impa | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑇 ) < +∞ ) |
| 12 | 1 2 3 | nmoxr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ) |
| 13 | 5 12 | syld3an3 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ) |
| 14 | xrrebnd | ⊢ ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ* → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( -∞ < ( 𝑁 ‘ 𝑇 ) ∧ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ( -∞ < ( 𝑁 ‘ 𝑇 ) ∧ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) ) |
| 16 | 7 11 15 | mpbir2and | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐵 ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ ) |