This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of an operator is nonnegative. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoxr.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmoxr.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| nmoxr.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| Assertion | nmooge0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → 0 ≤ ( 𝑁 ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoxr.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmoxr.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | nmoxr.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 4 | 0xr | ⊢ 0 ∈ ℝ* | |
| 5 | 4 | a1i | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → 0 ∈ ℝ* ) |
| 6 | simp2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → 𝑊 ∈ NrmCVec ) | |
| 7 | eqid | ⊢ ( 0vec ‘ 𝑈 ) = ( 0vec ‘ 𝑈 ) | |
| 8 | 1 7 | nvzcl | ⊢ ( 𝑈 ∈ NrmCVec → ( 0vec ‘ 𝑈 ) ∈ 𝑋 ) |
| 9 | ffvelcdm | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 0vec ‘ 𝑈 ) ∈ 𝑋 ) → ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ∈ 𝑌 ) | |
| 10 | 8 9 | sylan2 | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑈 ∈ NrmCVec ) → ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ∈ 𝑌 ) |
| 11 | 10 | ancoms | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ∈ 𝑌 ) |
| 12 | 11 | 3adant2 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ∈ 𝑌 ) |
| 13 | eqid | ⊢ ( normCV ‘ 𝑊 ) = ( normCV ‘ 𝑊 ) | |
| 14 | 2 13 | nvcl | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ∈ 𝑌 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ∈ ℝ ) |
| 15 | 6 12 14 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ∈ ℝ ) |
| 16 | 15 | rexrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ∈ ℝ* ) |
| 17 | 1 2 3 | nmoxr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ) |
| 18 | 2 13 | nvge0 | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ∈ 𝑌 ) → 0 ≤ ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ) |
| 19 | 6 12 18 | syl2anc | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → 0 ≤ ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ) |
| 20 | 2 13 | nmosetre | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ ) |
| 21 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 22 | 20 21 | sstrdi | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ* ) |
| 23 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 24 | 1 7 23 | nmosetn0 | ⊢ ( 𝑈 ∈ NrmCVec → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ∈ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ) |
| 25 | supxrub | ⊢ ( ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ⊆ ℝ* ∧ ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ∈ { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ≤ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) | |
| 26 | 22 24 25 | syl2an | ⊢ ( ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) ∧ 𝑈 ∈ NrmCVec ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ≤ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 27 | 26 | 3impa | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑈 ∈ NrmCVec ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ≤ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 28 | 27 | 3comr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ≤ sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 29 | 1 2 23 13 3 | nmooval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑧 ∈ 𝑋 ( ( ( normCV ‘ 𝑈 ) ‘ 𝑧 ) ≤ 1 ∧ 𝑥 = ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ 𝑧 ) ) ) } , ℝ* , < ) ) |
| 30 | 28 29 | breqtrrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( ( normCV ‘ 𝑊 ) ‘ ( 𝑇 ‘ ( 0vec ‘ 𝑈 ) ) ) ≤ ( 𝑁 ‘ 𝑇 ) ) |
| 31 | 5 16 17 19 30 | xrletrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → 0 ≤ ( 𝑁 ‘ 𝑇 ) ) |