This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express that an operator is bounded. (Contributed by NM, 11-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoubi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmoubi.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| nmoubi.l | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | ||
| nmoubi.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | ||
| nmoubi.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| nmoubi.u | ⊢ 𝑈 ∈ NrmCVec | ||
| nmoubi.w | ⊢ 𝑊 ∈ NrmCVec | ||
| Assertion | nmobndi | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoubi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmoubi.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | nmoubi.l | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | |
| 4 | nmoubi.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | |
| 5 | nmoubi.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 6 | nmoubi.u | ⊢ 𝑈 ∈ NrmCVec | |
| 7 | nmoubi.w | ⊢ 𝑊 ∈ NrmCVec | |
| 8 | leid | ⊢ ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ → ( 𝑁 ‘ 𝑇 ) ≤ ( 𝑁 ‘ 𝑇 ) ) | |
| 9 | breq2 | ⊢ ( 𝑟 = ( 𝑁 ‘ 𝑇 ) → ( ( 𝑁 ‘ 𝑇 ) ≤ 𝑟 ↔ ( 𝑁 ‘ 𝑇 ) ≤ ( 𝑁 ‘ 𝑇 ) ) ) | |
| 10 | 9 | rspcev | ⊢ ( ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ∧ ( 𝑁 ‘ 𝑇 ) ≤ ( 𝑁 ‘ 𝑇 ) ) → ∃ 𝑟 ∈ ℝ ( 𝑁 ‘ 𝑇 ) ≤ 𝑟 ) |
| 11 | 8 10 | mpdan | ⊢ ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ → ∃ 𝑟 ∈ ℝ ( 𝑁 ‘ 𝑇 ) ≤ 𝑟 ) |
| 12 | 1 2 5 | nmoxr | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ) |
| 13 | 6 7 12 | mp3an12 | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ) |
| 14 | 13 | adantr | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 𝑟 ∈ ℝ ∧ ( 𝑁 ‘ 𝑇 ) ≤ 𝑟 ) ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ) |
| 15 | simprl | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 𝑟 ∈ ℝ ∧ ( 𝑁 ‘ 𝑇 ) ≤ 𝑟 ) ) → 𝑟 ∈ ℝ ) | |
| 16 | 1 2 5 | nmogtmnf | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → -∞ < ( 𝑁 ‘ 𝑇 ) ) |
| 17 | 6 7 16 | mp3an12 | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → -∞ < ( 𝑁 ‘ 𝑇 ) ) |
| 18 | 17 | adantr | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 𝑟 ∈ ℝ ∧ ( 𝑁 ‘ 𝑇 ) ≤ 𝑟 ) ) → -∞ < ( 𝑁 ‘ 𝑇 ) ) |
| 19 | simprr | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 𝑟 ∈ ℝ ∧ ( 𝑁 ‘ 𝑇 ) ≤ 𝑟 ) ) → ( 𝑁 ‘ 𝑇 ) ≤ 𝑟 ) | |
| 20 | xrre | ⊢ ( ( ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ* ∧ 𝑟 ∈ ℝ ) ∧ ( -∞ < ( 𝑁 ‘ 𝑇 ) ∧ ( 𝑁 ‘ 𝑇 ) ≤ 𝑟 ) ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ ) | |
| 21 | 14 15 18 19 20 | syl22anc | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 𝑟 ∈ ℝ ∧ ( 𝑁 ‘ 𝑇 ) ≤ 𝑟 ) ) → ( 𝑁 ‘ 𝑇 ) ∈ ℝ ) |
| 22 | 21 | rexlimdvaa | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ∃ 𝑟 ∈ ℝ ( 𝑁 ‘ 𝑇 ) ≤ 𝑟 → ( 𝑁 ‘ 𝑇 ) ∈ ℝ ) ) |
| 23 | 11 22 | impbid2 | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ∃ 𝑟 ∈ ℝ ( 𝑁 ‘ 𝑇 ) ≤ 𝑟 ) ) |
| 24 | rexr | ⊢ ( 𝑟 ∈ ℝ → 𝑟 ∈ ℝ* ) | |
| 25 | 1 2 3 4 5 6 7 | nmoubi | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑟 ∈ ℝ* ) → ( ( 𝑁 ‘ 𝑇 ) ≤ 𝑟 ↔ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ) ) |
| 26 | 24 25 | sylan2 | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝑟 ∈ ℝ ) → ( ( 𝑁 ‘ 𝑇 ) ≤ 𝑟 ↔ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ) ) |
| 27 | 26 | rexbidva | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ∃ 𝑟 ∈ ℝ ( 𝑁 ‘ 𝑇 ) ≤ 𝑟 ↔ ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ) ) |
| 28 | 23 27 | bitrd | ⊢ ( 𝑇 : 𝑋 ⟶ 𝑌 → ( ( 𝑁 ‘ 𝑇 ) ∈ ℝ ↔ ∃ 𝑟 ∈ ℝ ∀ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ≤ 𝑟 ) ) ) |