This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a bounded linear operator." (Contributed by NM, 6-Nov-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bloval.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| bloval.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| bloval.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | ||
| Assertion | isblo | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bloval.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 2 | bloval.4 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 3 | bloval.5 | ⊢ 𝐵 = ( 𝑈 BLnOp 𝑊 ) | |
| 4 | 1 2 3 | bloval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → 𝐵 = { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ) |
| 5 | 4 | eleq2d | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐵 ↔ 𝑇 ∈ { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ) ) |
| 6 | fveq2 | ⊢ ( 𝑡 = 𝑇 → ( 𝑁 ‘ 𝑡 ) = ( 𝑁 ‘ 𝑇 ) ) | |
| 7 | 6 | breq1d | ⊢ ( 𝑡 = 𝑇 → ( ( 𝑁 ‘ 𝑡 ) < +∞ ↔ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) |
| 8 | 7 | elrab | ⊢ ( 𝑇 ∈ { 𝑡 ∈ 𝐿 ∣ ( 𝑁 ‘ 𝑡 ) < +∞ } ↔ ( 𝑇 ∈ 𝐿 ∧ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) |
| 9 | 5 8 | bitrdi | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ) → ( 𝑇 ∈ 𝐵 ↔ ( 𝑇 ∈ 𝐿 ∧ ( 𝑁 ‘ 𝑇 ) < +∞ ) ) ) |