This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An inner product is a complex number. (Contributed by NM, 1-Feb-2007) (Revised by Mario Carneiro, 5-May-2014) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ipcl.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| ipcl.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | ||
| Assertion | dipcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ipcl.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | ipcl.7 | ⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) | |
| 3 | eqid | ⊢ ( +𝑣 ‘ 𝑈 ) = ( +𝑣 ‘ 𝑈 ) | |
| 4 | eqid | ⊢ ( ·𝑠OLD ‘ 𝑈 ) = ( ·𝑠OLD ‘ 𝑈 ) | |
| 5 | eqid | ⊢ ( normCV ‘ 𝑈 ) = ( normCV ‘ 𝑈 ) | |
| 6 | 1 3 4 5 2 | ipval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) = ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ) / 4 ) ) |
| 7 | fzfid | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 1 ... 4 ) ∈ Fin ) | |
| 8 | ax-icn | ⊢ i ∈ ℂ | |
| 9 | elfznn | ⊢ ( 𝑘 ∈ ( 1 ... 4 ) → 𝑘 ∈ ℕ ) | |
| 10 | 9 | nnnn0d | ⊢ ( 𝑘 ∈ ( 1 ... 4 ) → 𝑘 ∈ ℕ0 ) |
| 11 | expcl | ⊢ ( ( i ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( i ↑ 𝑘 ) ∈ ℂ ) | |
| 12 | 8 10 11 | sylancr | ⊢ ( 𝑘 ∈ ( 1 ... 4 ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 13 | 12 | adantl | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( i ↑ 𝑘 ) ∈ ℂ ) |
| 14 | 1 3 4 5 2 | ipval2lem4 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ ( i ↑ 𝑘 ) ∈ ℂ ) → ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 15 | 12 14 | sylan2 | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ∈ ℂ ) |
| 16 | 13 15 | mulcld | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) ∧ 𝑘 ∈ ( 1 ... 4 ) ) → ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ) ∈ ℂ ) |
| 17 | 7 16 | fsumcl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ) ∈ ℂ ) |
| 18 | 4cn | ⊢ 4 ∈ ℂ | |
| 19 | 4ne0 | ⊢ 4 ≠ 0 | |
| 20 | divcl | ⊢ ( ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ) ∈ ℂ ∧ 4 ∈ ℂ ∧ 4 ≠ 0 ) → ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ) / 4 ) ∈ ℂ ) | |
| 21 | 18 19 20 | mp3an23 | ⊢ ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ) ∈ ℂ → ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ) / 4 ) ∈ ℂ ) |
| 22 | 17 21 | syl | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( Σ 𝑘 ∈ ( 1 ... 4 ) ( ( i ↑ 𝑘 ) · ( ( ( normCV ‘ 𝑈 ) ‘ ( 𝐴 ( +𝑣 ‘ 𝑈 ) ( ( i ↑ 𝑘 ) ( ·𝑠OLD ‘ 𝑈 ) 𝐵 ) ) ) ↑ 2 ) ) / 4 ) ∈ ℂ ) |
| 23 | 6 22 | eqeltrd | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐵 ) ∈ ℂ ) |