This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . The previous lemmas establish that the sequence M is Cauchy, so using completeness we now consider the convergent point Y . By assumption, U is an open cover, so Y is an element of some Z e. U , and some ball centered at Y is contained in Z . But the sequence contains arbitrarily small balls close to Y , so some element ball ( Mn ) of the sequence is contained in Z . And finally we arrive at a contradiction, because { Z } is a finite subcover of U that covers ball ( Mn ) , yet ball ( Mn ) e. K . For convenience, we write this contradiction as ph -> ps where ph is all the accumulated hypotheses and ps is anything at all. (Contributed by Jeff Madsen, 22-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| heibor.3 | ⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | ||
| heibor.4 | ⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } | ||
| heibor.5 | ⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | ||
| heibor.6 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | ||
| heibor.7 | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) | ||
| heibor.8 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) | ||
| heibor.9 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) | ||
| heibor.10 | ⊢ ( 𝜑 → 𝐶 𝐺 0 ) | ||
| heibor.11 | ⊢ 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) | ||
| heibor.12 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) | ||
| heibor.13 | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | ||
| heibor.14 | ⊢ 𝑌 ∈ V | ||
| heibor.15 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑍 ) | ||
| heibor.16 | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | ||
| heibor.17 | ⊢ ( 𝜑 → ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑌 ) | ||
| Assertion | heiborlem8 | ⊢ ( 𝜑 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | heibor.3 | ⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | |
| 3 | heibor.4 | ⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } | |
| 4 | heibor.5 | ⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | |
| 5 | heibor.6 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | |
| 6 | heibor.7 | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) | |
| 7 | heibor.8 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) | |
| 8 | heibor.9 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) | |
| 9 | heibor.10 | ⊢ ( 𝜑 → 𝐶 𝐺 0 ) | |
| 10 | heibor.11 | ⊢ 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) | |
| 11 | heibor.12 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) | |
| 12 | heibor.13 | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | |
| 13 | heibor.14 | ⊢ 𝑌 ∈ V | |
| 14 | heibor.15 | ⊢ ( 𝜑 → 𝑌 ∈ 𝑍 ) | |
| 15 | heibor.16 | ⊢ ( 𝜑 → 𝑍 ∈ 𝑈 ) | |
| 16 | heibor.17 | ⊢ ( 𝜑 → ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑌 ) | |
| 17 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 18 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 19 | 5 17 18 | 3syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 20 | 12 15 | sseldd | ⊢ ( 𝜑 → 𝑍 ∈ 𝐽 ) |
| 21 | 1 | mopni2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑍 ∈ 𝐽 ∧ 𝑌 ∈ 𝑍 ) → ∃ 𝑥 ∈ ℝ+ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 ) |
| 22 | 19 20 14 21 | syl3anc | ⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ+ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 ) |
| 23 | rphalfcl | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ ) | |
| 24 | breq2 | ⊢ ( 𝑟 = ( 𝑥 / 2 ) → ( ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < 𝑟 ↔ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) | |
| 25 | 24 | rexbidv | ⊢ ( 𝑟 = ( 𝑥 / 2 ) → ( ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < 𝑟 ↔ ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) |
| 26 | 1 2 3 4 5 6 7 8 9 10 11 | heiborlem7 | ⊢ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < 𝑟 |
| 27 | 25 26 | vtoclri | ⊢ ( ( 𝑥 / 2 ) ∈ ℝ+ → ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) |
| 28 | 23 27 | syl | ⊢ ( 𝑥 ∈ ℝ+ → ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) |
| 29 | 28 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) |
| 30 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 31 | 1 2 3 4 5 6 7 8 9 10 | heiborlem4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 ) |
| 32 | fvex | ⊢ ( 𝑆 ‘ 𝑘 ) ∈ V | |
| 33 | vex | ⊢ 𝑘 ∈ V | |
| 34 | 1 2 3 32 33 | heiborlem2 | ⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 ↔ ( 𝑘 ∈ ℕ0 ∧ ( 𝑆 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) ) |
| 35 | 34 | simp3bi | ⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) |
| 36 | 31 35 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) |
| 37 | 30 36 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) |
| 38 | 37 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) |
| 39 | 19 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 40 | 1 2 3 4 5 6 7 8 9 10 11 | heiborlem5 | ⊢ ( 𝜑 → 𝑀 : ℕ ⟶ ( 𝑋 × ℝ+ ) ) |
| 41 | 40 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ 𝑘 ) ∈ ( 𝑋 × ℝ+ ) ) |
| 42 | 41 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 𝑀 ‘ 𝑘 ) ∈ ( 𝑋 × ℝ+ ) ) |
| 43 | xp1st | ⊢ ( ( 𝑀 ‘ 𝑘 ) ∈ ( 𝑋 × ℝ+ ) → ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ 𝑋 ) | |
| 44 | 42 43 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ 𝑋 ) |
| 45 | 2nn | ⊢ 2 ∈ ℕ | |
| 46 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) | |
| 47 | 45 30 46 | sylancr | ⊢ ( 𝑘 ∈ ℕ → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
| 48 | 47 | nnrpd | ⊢ ( 𝑘 ∈ ℕ → ( 2 ↑ 𝑘 ) ∈ ℝ+ ) |
| 49 | 48 | rpreccld | ⊢ ( 𝑘 ∈ ℕ → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ+ ) |
| 50 | 49 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ+ ) |
| 51 | 50 | rpxrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ* ) |
| 52 | xp2nd | ⊢ ( ( 𝑀 ‘ 𝑘 ) ∈ ( 𝑋 × ℝ+ ) → ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ ℝ+ ) | |
| 53 | 42 52 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ ℝ+ ) |
| 54 | 53 | rpxrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ ℝ* ) |
| 55 | 1le3 | ⊢ 1 ≤ 3 | |
| 56 | elrp | ⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ ↔ ( ( 2 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑘 ) ) ) | |
| 57 | 1re | ⊢ 1 ∈ ℝ | |
| 58 | 3re | ⊢ 3 ∈ ℝ | |
| 59 | lediv1 | ⊢ ( ( 1 ∈ ℝ ∧ 3 ∈ ℝ ∧ ( ( 2 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑘 ) ) ) → ( 1 ≤ 3 ↔ ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) ) ) | |
| 60 | 57 58 59 | mp3an12 | ⊢ ( ( ( 2 ↑ 𝑘 ) ∈ ℝ ∧ 0 < ( 2 ↑ 𝑘 ) ) → ( 1 ≤ 3 ↔ ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) ) ) |
| 61 | 56 60 | sylbi | ⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( 1 ≤ 3 ↔ ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) ) ) |
| 62 | 55 61 | mpbii | ⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 63 | 48 62 | syl | ⊢ ( 𝑘 ∈ ℕ → ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 64 | 63 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 65 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑆 ‘ 𝑛 ) = ( 𝑆 ‘ 𝑘 ) ) | |
| 66 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑘 ) ) | |
| 67 | 66 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 3 / ( 2 ↑ 𝑛 ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 68 | 65 67 | opeq12d | ⊢ ( 𝑛 = 𝑘 → 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 = 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) |
| 69 | opex | ⊢ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ∈ V | |
| 70 | 68 11 69 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( 𝑀 ‘ 𝑘 ) = 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) |
| 71 | 70 | fveq2d | ⊢ ( 𝑘 ∈ ℕ → ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) = ( 2nd ‘ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) ) |
| 72 | ovex | ⊢ ( 3 / ( 2 ↑ 𝑘 ) ) ∈ V | |
| 73 | 32 72 | op2nd | ⊢ ( 2nd ‘ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) = ( 3 / ( 2 ↑ 𝑘 ) ) |
| 74 | 71 73 | eqtrdi | ⊢ ( 𝑘 ∈ ℕ → ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 75 | 74 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 76 | 64 75 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) |
| 77 | ssbl | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ 𝑋 ) ∧ ( ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ ℝ* ) ∧ ( 1 / ( 2 ↑ 𝑘 ) ) ≤ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ⊆ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) | |
| 78 | 39 44 51 54 76 77 | syl221anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ⊆ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) |
| 79 | 30 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝑘 ∈ ℕ0 ) |
| 80 | oveq1 | ⊢ ( 𝑧 = ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) → ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | |
| 81 | oveq2 | ⊢ ( 𝑚 = 𝑘 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑘 ) ) | |
| 82 | 81 | oveq2d | ⊢ ( 𝑚 = 𝑘 → ( 1 / ( 2 ↑ 𝑚 ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 83 | 82 | oveq2d | ⊢ ( 𝑚 = 𝑘 → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 84 | ovex | ⊢ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∈ V | |
| 85 | 80 83 4 84 | ovmpo | ⊢ ( ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ 𝑋 ∧ 𝑘 ∈ ℕ0 ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) 𝐵 𝑘 ) = ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 86 | 44 79 85 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) 𝐵 𝑘 ) = ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 87 | 70 | fveq2d | ⊢ ( 𝑘 ∈ ℕ → ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) = ( 1st ‘ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) ) |
| 88 | 32 72 | op1st | ⊢ ( 1st ‘ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) = ( 𝑆 ‘ 𝑘 ) |
| 89 | 87 88 | eqtrdi | ⊢ ( 𝑘 ∈ ℕ → ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) = ( 𝑆 ‘ 𝑘 ) ) |
| 90 | 89 | ad2antrl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) = ( 𝑆 ‘ 𝑘 ) ) |
| 91 | 90 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) 𝐵 𝑘 ) = ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ) |
| 92 | 86 91 | eqtr3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) = ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ) |
| 93 | df-ov | ⊢ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) , ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) 〉 ) | |
| 94 | 1st2nd2 | ⊢ ( ( 𝑀 ‘ 𝑘 ) ∈ ( 𝑋 × ℝ+ ) → ( 𝑀 ‘ 𝑘 ) = 〈 ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) , ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) 〉 ) | |
| 95 | 42 94 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 𝑀 ‘ 𝑘 ) = 〈 ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) , ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) 〉 ) |
| 96 | 95 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) , ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) 〉 ) ) |
| 97 | 93 96 | eqtr4id | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) = ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) |
| 98 | 78 92 97 | 3sstr3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) |
| 99 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 100 | 39 99 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝐽 ∈ Top ) |
| 101 | blssm | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ 𝑋 ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ ℝ* ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) ⊆ 𝑋 ) | |
| 102 | 39 44 54 101 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) ⊆ 𝑋 ) |
| 103 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 104 | 39 103 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝑋 = ∪ 𝐽 ) |
| 105 | 102 97 104 | 3sstr3d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ⊆ ∪ 𝐽 ) |
| 106 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 107 | 106 | sscls | ⊢ ( ( 𝐽 ∈ Top ∧ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ⊆ ∪ 𝐽 ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) |
| 108 | 100 105 107 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ⊆ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) |
| 109 | 97 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) = ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) |
| 110 | 23 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 𝑥 / 2 ) ∈ ℝ+ ) |
| 111 | 110 | rpxrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 𝑥 / 2 ) ∈ ℝ* ) |
| 112 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) | |
| 113 | 1 | blsscls | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ 𝑋 ) ∧ ( ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ ℝ* ∧ ( 𝑥 / 2 ) ∈ ℝ* ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) ⊆ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
| 114 | 39 44 54 111 112 113 | syl23anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) ⊆ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
| 115 | 109 114 | eqsstrrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ⊆ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
| 116 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 117 | 116 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝑥 ∈ ℝ ) |
| 118 | 1 2 3 4 5 6 7 8 9 10 11 | heiborlem6 | ⊢ ( 𝜑 → ∀ 𝑡 ∈ ℕ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ ( 𝑡 + 1 ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑡 ) ) ) |
| 119 | 19 40 118 1 | caublcls | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑌 ∧ 𝑘 ∈ ℕ ) → 𝑌 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) |
| 120 | 119 | 3expia | ⊢ ( ( 𝜑 ∧ ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) 𝑌 ) → ( 𝑘 ∈ ℕ → 𝑌 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) ) |
| 121 | 16 120 | mpdan | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ → 𝑌 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) ) |
| 122 | 121 | imp | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → 𝑌 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) |
| 123 | 122 | ad2ant2r | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝑌 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ) |
| 124 | 115 123 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → 𝑌 ∈ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
| 125 | blhalf | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ ℝ ∧ 𝑌 ∈ ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ) | |
| 126 | 39 44 117 124 125 | syl22anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 1st ‘ ( 𝑀 ‘ 𝑘 ) ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 127 | 115 126 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 128 | 108 127 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 129 | 98 128 | sstrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 130 | sstr2 | ⊢ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) → ( ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) ) | |
| 131 | 129 130 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) ) |
| 132 | unisng | ⊢ ( 𝑍 ∈ 𝑈 → ∪ { 𝑍 } = 𝑍 ) | |
| 133 | 15 132 | syl | ⊢ ( 𝜑 → ∪ { 𝑍 } = 𝑍 ) |
| 134 | 133 | sseq2d | ⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ { 𝑍 } ↔ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) ) |
| 135 | 134 | biimpar | ⊢ ( ( 𝜑 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ { 𝑍 } ) |
| 136 | 15 | snssd | ⊢ ( 𝜑 → { 𝑍 } ⊆ 𝑈 ) |
| 137 | snex | ⊢ { 𝑍 } ∈ V | |
| 138 | 137 | elpw | ⊢ ( { 𝑍 } ∈ 𝒫 𝑈 ↔ { 𝑍 } ⊆ 𝑈 ) |
| 139 | 136 138 | sylibr | ⊢ ( 𝜑 → { 𝑍 } ∈ 𝒫 𝑈 ) |
| 140 | snfi | ⊢ { 𝑍 } ∈ Fin | |
| 141 | 140 | a1i | ⊢ ( 𝜑 → { 𝑍 } ∈ Fin ) |
| 142 | 139 141 | elind | ⊢ ( 𝜑 → { 𝑍 } ∈ ( 𝒫 𝑈 ∩ Fin ) ) |
| 143 | unieq | ⊢ ( 𝑣 = { 𝑍 } → ∪ 𝑣 = ∪ { 𝑍 } ) | |
| 144 | 143 | sseq2d | ⊢ ( 𝑣 = { 𝑍 } → ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ↔ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ { 𝑍 } ) ) |
| 145 | 144 | rspcev | ⊢ ( ( { 𝑍 } ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ { 𝑍 } ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ) |
| 146 | 142 145 | sylan | ⊢ ( ( 𝜑 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ { 𝑍 } ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ) |
| 147 | 135 146 | syldan | ⊢ ( ( 𝜑 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ) |
| 148 | ovex | ⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ V | |
| 149 | sseq1 | ⊢ ( 𝑢 = ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) → ( 𝑢 ⊆ ∪ 𝑣 ↔ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ) ) | |
| 150 | 149 | rexbidv | ⊢ ( 𝑢 = ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) → ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ) ) |
| 151 | 150 | notbid | ⊢ ( 𝑢 = ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) → ( ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ) ) |
| 152 | 148 151 2 | elab2 | ⊢ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ) |
| 153 | 152 | con2bii | ⊢ ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ ∪ 𝑣 ↔ ¬ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) |
| 154 | 147 153 | sylib | ⊢ ( ( 𝜑 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 ) → ¬ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) |
| 155 | 154 | ex | ⊢ ( 𝜑 → ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 → ¬ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) ) |
| 156 | 155 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ⊆ 𝑍 → ¬ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) ) |
| 157 | 131 156 | syld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ( ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 → ¬ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) ) |
| 158 | 38 157 | mt2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑘 ∈ ℕ ∧ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < ( 𝑥 / 2 ) ) ) → ¬ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 ) |
| 159 | 29 158 | rexlimddv | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ¬ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 ) |
| 160 | 159 | nrexdv | ⊢ ( 𝜑 → ¬ ∃ 𝑥 ∈ ℝ+ ( 𝑌 ( ball ‘ 𝐷 ) 𝑥 ) ⊆ 𝑍 ) |
| 161 | 22 160 | pm2.21dd | ⊢ ( 𝜑 → 𝜓 ) |