This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . The function M is a set of point-and-radius pairs suitable for application to caubl . (Contributed by Jeff Madsen, 23-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| heibor.3 | ⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | ||
| heibor.4 | ⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } | ||
| heibor.5 | ⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | ||
| heibor.6 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | ||
| heibor.7 | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) | ||
| heibor.8 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) | ||
| heibor.9 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) | ||
| heibor.10 | ⊢ ( 𝜑 → 𝐶 𝐺 0 ) | ||
| heibor.11 | ⊢ 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) | ||
| heibor.12 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) | ||
| Assertion | heiborlem5 | ⊢ ( 𝜑 → 𝑀 : ℕ ⟶ ( 𝑋 × ℝ+ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | heibor.3 | ⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | |
| 3 | heibor.4 | ⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } | |
| 4 | heibor.5 | ⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | |
| 5 | heibor.6 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | |
| 6 | heibor.7 | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) | |
| 7 | heibor.8 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) | |
| 8 | heibor.9 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) | |
| 9 | heibor.10 | ⊢ ( 𝜑 → 𝐶 𝐺 0 ) | |
| 10 | heibor.11 | ⊢ 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) | |
| 11 | heibor.12 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) | |
| 12 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 13 | inss1 | ⊢ ( 𝒫 𝑋 ∩ Fin ) ⊆ 𝒫 𝑋 | |
| 14 | 6 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ ( 𝒫 𝑋 ∩ Fin ) ) |
| 15 | 13 14 | sselid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝒫 𝑋 ) |
| 16 | 15 | elpwid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ⊆ 𝑋 ) |
| 17 | 1 2 3 4 5 6 7 8 9 10 | heiborlem4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 ) |
| 18 | fvex | ⊢ ( 𝑆 ‘ 𝑘 ) ∈ V | |
| 19 | vex | ⊢ 𝑘 ∈ V | |
| 20 | 1 2 3 18 19 | heiborlem2 | ⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 ↔ ( 𝑘 ∈ ℕ0 ∧ ( 𝑆 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) ) |
| 21 | 20 | simp2bi | ⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 → ( 𝑆 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 22 | 17 21 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 23 | 16 22 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ) |
| 24 | 12 23 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ) |
| 25 | 24 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ) |
| 26 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝑆 ‘ 𝑘 ) = ( 𝑆 ‘ 𝑛 ) ) | |
| 27 | 26 | eleq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ↔ ( 𝑆 ‘ 𝑛 ) ∈ 𝑋 ) ) |
| 28 | 27 | cbvralvw | ⊢ ( ∀ 𝑘 ∈ ℕ ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ↔ ∀ 𝑛 ∈ ℕ ( 𝑆 ‘ 𝑛 ) ∈ 𝑋 ) |
| 29 | 25 28 | sylib | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝑆 ‘ 𝑛 ) ∈ 𝑋 ) |
| 30 | 3re | ⊢ 3 ∈ ℝ | |
| 31 | 3pos | ⊢ 0 < 3 | |
| 32 | 30 31 | elrpii | ⊢ 3 ∈ ℝ+ |
| 33 | 2nn | ⊢ 2 ∈ ℕ | |
| 34 | nnnn0 | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) | |
| 35 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) | |
| 36 | 33 34 35 | sylancr | ⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 37 | 36 | nnrpd | ⊢ ( 𝑛 ∈ ℕ → ( 2 ↑ 𝑛 ) ∈ ℝ+ ) |
| 38 | rpdivcl | ⊢ ( ( 3 ∈ ℝ+ ∧ ( 2 ↑ 𝑛 ) ∈ ℝ+ ) → ( 3 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) | |
| 39 | 32 37 38 | sylancr | ⊢ ( 𝑛 ∈ ℕ → ( 3 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) |
| 40 | opelxpi | ⊢ ( ( ( 𝑆 ‘ 𝑛 ) ∈ 𝑋 ∧ ( 3 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) → 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ∈ ( 𝑋 × ℝ+ ) ) | |
| 41 | 40 | expcom | ⊢ ( ( 3 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ → ( ( 𝑆 ‘ 𝑛 ) ∈ 𝑋 → 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ∈ ( 𝑋 × ℝ+ ) ) ) |
| 42 | 39 41 | syl | ⊢ ( 𝑛 ∈ ℕ → ( ( 𝑆 ‘ 𝑛 ) ∈ 𝑋 → 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ∈ ( 𝑋 × ℝ+ ) ) ) |
| 43 | 42 | ralimia | ⊢ ( ∀ 𝑛 ∈ ℕ ( 𝑆 ‘ 𝑛 ) ∈ 𝑋 → ∀ 𝑛 ∈ ℕ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ∈ ( 𝑋 × ℝ+ ) ) |
| 44 | 29 43 | syl | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ∈ ( 𝑋 × ℝ+ ) ) |
| 45 | 11 | fmpt | ⊢ ( ∀ 𝑛 ∈ ℕ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ∈ ( 𝑋 × ℝ+ ) ↔ 𝑀 : ℕ ⟶ ( 𝑋 × ℝ+ ) ) |
| 46 | 44 45 | sylib | ⊢ ( 𝜑 → 𝑀 : ℕ ⟶ ( 𝑋 × ℝ+ ) ) |