This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . The previous lemmas establish that the sequence M is Cauchy, so using completeness we now consider the convergent point Y . By assumption, U is an open cover, so Y is an element of some Z e. U , and some ball centered at Y is contained in Z . But the sequence contains arbitrarily small balls close to Y , so some element ball ( Mn ) of the sequence is contained in Z . And finally we arrive at a contradiction, because { Z } is a finite subcover of U that covers ball ( Mn ) , yet ball ( Mn ) e. K . For convenience, we write this contradiction as ph -> ps where ph is all the accumulated hypotheses and ps is anything at all. (Contributed by Jeff Madsen, 22-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | |- J = ( MetOpen ` D ) |
|
| heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
||
| heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
||
| heibor.5 | |- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
||
| heibor.6 | |- ( ph -> D e. ( CMet ` X ) ) |
||
| heibor.7 | |- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
||
| heibor.8 | |- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
||
| heibor.9 | |- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
||
| heibor.10 | |- ( ph -> C G 0 ) |
||
| heibor.11 | |- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
||
| heibor.12 | |- M = ( n e. NN |-> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. ) |
||
| heibor.13 | |- ( ph -> U C_ J ) |
||
| heibor.14 | |- Y e. _V |
||
| heibor.15 | |- ( ph -> Y e. Z ) |
||
| heibor.16 | |- ( ph -> Z e. U ) |
||
| heibor.17 | |- ( ph -> ( 1st o. M ) ( ~~>t ` J ) Y ) |
||
| Assertion | heiborlem8 | |- ( ph -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | |- J = ( MetOpen ` D ) |
|
| 2 | heibor.3 | |- K = { u | -. E. v e. ( ~P U i^i Fin ) u C_ U. v } |
|
| 3 | heibor.4 | |- G = { <. y , n >. | ( n e. NN0 /\ y e. ( F ` n ) /\ ( y B n ) e. K ) } |
|
| 4 | heibor.5 | |- B = ( z e. X , m e. NN0 |-> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
|
| 5 | heibor.6 | |- ( ph -> D e. ( CMet ` X ) ) |
|
| 6 | heibor.7 | |- ( ph -> F : NN0 --> ( ~P X i^i Fin ) ) |
|
| 7 | heibor.8 | |- ( ph -> A. n e. NN0 X = U_ y e. ( F ` n ) ( y B n ) ) |
|
| 8 | heibor.9 | |- ( ph -> A. x e. G ( ( T ` x ) G ( ( 2nd ` x ) + 1 ) /\ ( ( B ` x ) i^i ( ( T ` x ) B ( ( 2nd ` x ) + 1 ) ) ) e. K ) ) |
|
| 9 | heibor.10 | |- ( ph -> C G 0 ) |
|
| 10 | heibor.11 | |- S = seq 0 ( T , ( m e. NN0 |-> if ( m = 0 , C , ( m - 1 ) ) ) ) |
|
| 11 | heibor.12 | |- M = ( n e. NN |-> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. ) |
|
| 12 | heibor.13 | |- ( ph -> U C_ J ) |
|
| 13 | heibor.14 | |- Y e. _V |
|
| 14 | heibor.15 | |- ( ph -> Y e. Z ) |
|
| 15 | heibor.16 | |- ( ph -> Z e. U ) |
|
| 16 | heibor.17 | |- ( ph -> ( 1st o. M ) ( ~~>t ` J ) Y ) |
|
| 17 | cmetmet | |- ( D e. ( CMet ` X ) -> D e. ( Met ` X ) ) |
|
| 18 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 19 | 5 17 18 | 3syl | |- ( ph -> D e. ( *Met ` X ) ) |
| 20 | 12 15 | sseldd | |- ( ph -> Z e. J ) |
| 21 | 1 | mopni2 | |- ( ( D e. ( *Met ` X ) /\ Z e. J /\ Y e. Z ) -> E. x e. RR+ ( Y ( ball ` D ) x ) C_ Z ) |
| 22 | 19 20 14 21 | syl3anc | |- ( ph -> E. x e. RR+ ( Y ( ball ` D ) x ) C_ Z ) |
| 23 | rphalfcl | |- ( x e. RR+ -> ( x / 2 ) e. RR+ ) |
|
| 24 | breq2 | |- ( r = ( x / 2 ) -> ( ( 2nd ` ( M ` k ) ) < r <-> ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) |
|
| 25 | 24 | rexbidv | |- ( r = ( x / 2 ) -> ( E. k e. NN ( 2nd ` ( M ` k ) ) < r <-> E. k e. NN ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) |
| 26 | 1 2 3 4 5 6 7 8 9 10 11 | heiborlem7 | |- A. r e. RR+ E. k e. NN ( 2nd ` ( M ` k ) ) < r |
| 27 | 25 26 | vtoclri | |- ( ( x / 2 ) e. RR+ -> E. k e. NN ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) |
| 28 | 23 27 | syl | |- ( x e. RR+ -> E. k e. NN ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) |
| 29 | 28 | adantl | |- ( ( ph /\ x e. RR+ ) -> E. k e. NN ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) |
| 30 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 31 | 1 2 3 4 5 6 7 8 9 10 | heiborlem4 | |- ( ( ph /\ k e. NN0 ) -> ( S ` k ) G k ) |
| 32 | fvex | |- ( S ` k ) e. _V |
|
| 33 | vex | |- k e. _V |
|
| 34 | 1 2 3 32 33 | heiborlem2 | |- ( ( S ` k ) G k <-> ( k e. NN0 /\ ( S ` k ) e. ( F ` k ) /\ ( ( S ` k ) B k ) e. K ) ) |
| 35 | 34 | simp3bi | |- ( ( S ` k ) G k -> ( ( S ` k ) B k ) e. K ) |
| 36 | 31 35 | syl | |- ( ( ph /\ k e. NN0 ) -> ( ( S ` k ) B k ) e. K ) |
| 37 | 30 36 | sylan2 | |- ( ( ph /\ k e. NN ) -> ( ( S ` k ) B k ) e. K ) |
| 38 | 37 | ad2ant2r | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( S ` k ) B k ) e. K ) |
| 39 | 19 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> D e. ( *Met ` X ) ) |
| 40 | 1 2 3 4 5 6 7 8 9 10 11 | heiborlem5 | |- ( ph -> M : NN --> ( X X. RR+ ) ) |
| 41 | 40 | ffvelcdmda | |- ( ( ph /\ k e. NN ) -> ( M ` k ) e. ( X X. RR+ ) ) |
| 42 | 41 | ad2ant2r | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( M ` k ) e. ( X X. RR+ ) ) |
| 43 | xp1st | |- ( ( M ` k ) e. ( X X. RR+ ) -> ( 1st ` ( M ` k ) ) e. X ) |
|
| 44 | 42 43 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( 1st ` ( M ` k ) ) e. X ) |
| 45 | 2nn | |- 2 e. NN |
|
| 46 | nnexpcl | |- ( ( 2 e. NN /\ k e. NN0 ) -> ( 2 ^ k ) e. NN ) |
|
| 47 | 45 30 46 | sylancr | |- ( k e. NN -> ( 2 ^ k ) e. NN ) |
| 48 | 47 | nnrpd | |- ( k e. NN -> ( 2 ^ k ) e. RR+ ) |
| 49 | 48 | rpreccld | |- ( k e. NN -> ( 1 / ( 2 ^ k ) ) e. RR+ ) |
| 50 | 49 | ad2antrl | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( 1 / ( 2 ^ k ) ) e. RR+ ) |
| 51 | 50 | rpxrd | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( 1 / ( 2 ^ k ) ) e. RR* ) |
| 52 | xp2nd | |- ( ( M ` k ) e. ( X X. RR+ ) -> ( 2nd ` ( M ` k ) ) e. RR+ ) |
|
| 53 | 42 52 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( 2nd ` ( M ` k ) ) e. RR+ ) |
| 54 | 53 | rpxrd | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( 2nd ` ( M ` k ) ) e. RR* ) |
| 55 | 1le3 | |- 1 <_ 3 |
|
| 56 | elrp | |- ( ( 2 ^ k ) e. RR+ <-> ( ( 2 ^ k ) e. RR /\ 0 < ( 2 ^ k ) ) ) |
|
| 57 | 1re | |- 1 e. RR |
|
| 58 | 3re | |- 3 e. RR |
|
| 59 | lediv1 | |- ( ( 1 e. RR /\ 3 e. RR /\ ( ( 2 ^ k ) e. RR /\ 0 < ( 2 ^ k ) ) ) -> ( 1 <_ 3 <-> ( 1 / ( 2 ^ k ) ) <_ ( 3 / ( 2 ^ k ) ) ) ) |
|
| 60 | 57 58 59 | mp3an12 | |- ( ( ( 2 ^ k ) e. RR /\ 0 < ( 2 ^ k ) ) -> ( 1 <_ 3 <-> ( 1 / ( 2 ^ k ) ) <_ ( 3 / ( 2 ^ k ) ) ) ) |
| 61 | 56 60 | sylbi | |- ( ( 2 ^ k ) e. RR+ -> ( 1 <_ 3 <-> ( 1 / ( 2 ^ k ) ) <_ ( 3 / ( 2 ^ k ) ) ) ) |
| 62 | 55 61 | mpbii | |- ( ( 2 ^ k ) e. RR+ -> ( 1 / ( 2 ^ k ) ) <_ ( 3 / ( 2 ^ k ) ) ) |
| 63 | 48 62 | syl | |- ( k e. NN -> ( 1 / ( 2 ^ k ) ) <_ ( 3 / ( 2 ^ k ) ) ) |
| 64 | 63 | ad2antrl | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( 1 / ( 2 ^ k ) ) <_ ( 3 / ( 2 ^ k ) ) ) |
| 65 | fveq2 | |- ( n = k -> ( S ` n ) = ( S ` k ) ) |
|
| 66 | oveq2 | |- ( n = k -> ( 2 ^ n ) = ( 2 ^ k ) ) |
|
| 67 | 66 | oveq2d | |- ( n = k -> ( 3 / ( 2 ^ n ) ) = ( 3 / ( 2 ^ k ) ) ) |
| 68 | 65 67 | opeq12d | |- ( n = k -> <. ( S ` n ) , ( 3 / ( 2 ^ n ) ) >. = <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) |
| 69 | opex | |- <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. e. _V |
|
| 70 | 68 11 69 | fvmpt | |- ( k e. NN -> ( M ` k ) = <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) |
| 71 | 70 | fveq2d | |- ( k e. NN -> ( 2nd ` ( M ` k ) ) = ( 2nd ` <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) ) |
| 72 | ovex | |- ( 3 / ( 2 ^ k ) ) e. _V |
|
| 73 | 32 72 | op2nd | |- ( 2nd ` <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) = ( 3 / ( 2 ^ k ) ) |
| 74 | 71 73 | eqtrdi | |- ( k e. NN -> ( 2nd ` ( M ` k ) ) = ( 3 / ( 2 ^ k ) ) ) |
| 75 | 74 | ad2antrl | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( 2nd ` ( M ` k ) ) = ( 3 / ( 2 ^ k ) ) ) |
| 76 | 64 75 | breqtrrd | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( 1 / ( 2 ^ k ) ) <_ ( 2nd ` ( M ` k ) ) ) |
| 77 | ssbl | |- ( ( ( D e. ( *Met ` X ) /\ ( 1st ` ( M ` k ) ) e. X ) /\ ( ( 1 / ( 2 ^ k ) ) e. RR* /\ ( 2nd ` ( M ` k ) ) e. RR* ) /\ ( 1 / ( 2 ^ k ) ) <_ ( 2nd ` ( M ` k ) ) ) -> ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) C_ ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 2nd ` ( M ` k ) ) ) ) |
|
| 78 | 39 44 51 54 76 77 | syl221anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) C_ ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 2nd ` ( M ` k ) ) ) ) |
| 79 | 30 | ad2antrl | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> k e. NN0 ) |
| 80 | oveq1 | |- ( z = ( 1st ` ( M ` k ) ) -> ( z ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) = ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) ) |
|
| 81 | oveq2 | |- ( m = k -> ( 2 ^ m ) = ( 2 ^ k ) ) |
|
| 82 | 81 | oveq2d | |- ( m = k -> ( 1 / ( 2 ^ m ) ) = ( 1 / ( 2 ^ k ) ) ) |
| 83 | 82 | oveq2d | |- ( m = k -> ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 1 / ( 2 ^ m ) ) ) = ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) ) |
| 84 | ovex | |- ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) e. _V |
|
| 85 | 80 83 4 84 | ovmpo | |- ( ( ( 1st ` ( M ` k ) ) e. X /\ k e. NN0 ) -> ( ( 1st ` ( M ` k ) ) B k ) = ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) ) |
| 86 | 44 79 85 | syl2anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( 1st ` ( M ` k ) ) B k ) = ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) ) |
| 87 | 70 | fveq2d | |- ( k e. NN -> ( 1st ` ( M ` k ) ) = ( 1st ` <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) ) |
| 88 | 32 72 | op1st | |- ( 1st ` <. ( S ` k ) , ( 3 / ( 2 ^ k ) ) >. ) = ( S ` k ) |
| 89 | 87 88 | eqtrdi | |- ( k e. NN -> ( 1st ` ( M ` k ) ) = ( S ` k ) ) |
| 90 | 89 | ad2antrl | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( 1st ` ( M ` k ) ) = ( S ` k ) ) |
| 91 | 90 | oveq1d | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( 1st ` ( M ` k ) ) B k ) = ( ( S ` k ) B k ) ) |
| 92 | 86 91 | eqtr3d | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 1 / ( 2 ^ k ) ) ) = ( ( S ` k ) B k ) ) |
| 93 | df-ov | |- ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 2nd ` ( M ` k ) ) ) = ( ( ball ` D ) ` <. ( 1st ` ( M ` k ) ) , ( 2nd ` ( M ` k ) ) >. ) |
|
| 94 | 1st2nd2 | |- ( ( M ` k ) e. ( X X. RR+ ) -> ( M ` k ) = <. ( 1st ` ( M ` k ) ) , ( 2nd ` ( M ` k ) ) >. ) |
|
| 95 | 42 94 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( M ` k ) = <. ( 1st ` ( M ` k ) ) , ( 2nd ` ( M ` k ) ) >. ) |
| 96 | 95 | fveq2d | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( ball ` D ) ` ( M ` k ) ) = ( ( ball ` D ) ` <. ( 1st ` ( M ` k ) ) , ( 2nd ` ( M ` k ) ) >. ) ) |
| 97 | 93 96 | eqtr4id | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 2nd ` ( M ` k ) ) ) = ( ( ball ` D ) ` ( M ` k ) ) ) |
| 98 | 78 92 97 | 3sstr3d | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( S ` k ) B k ) C_ ( ( ball ` D ) ` ( M ` k ) ) ) |
| 99 | 1 | mopntop | |- ( D e. ( *Met ` X ) -> J e. Top ) |
| 100 | 39 99 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> J e. Top ) |
| 101 | blssm | |- ( ( D e. ( *Met ` X ) /\ ( 1st ` ( M ` k ) ) e. X /\ ( 2nd ` ( M ` k ) ) e. RR* ) -> ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 2nd ` ( M ` k ) ) ) C_ X ) |
|
| 102 | 39 44 54 101 | syl3anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 2nd ` ( M ` k ) ) ) C_ X ) |
| 103 | 1 | mopnuni | |- ( D e. ( *Met ` X ) -> X = U. J ) |
| 104 | 39 103 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> X = U. J ) |
| 105 | 102 97 104 | 3sstr3d | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( ball ` D ) ` ( M ` k ) ) C_ U. J ) |
| 106 | eqid | |- U. J = U. J |
|
| 107 | 106 | sscls | |- ( ( J e. Top /\ ( ( ball ` D ) ` ( M ` k ) ) C_ U. J ) -> ( ( ball ` D ) ` ( M ` k ) ) C_ ( ( cls ` J ) ` ( ( ball ` D ) ` ( M ` k ) ) ) ) |
| 108 | 100 105 107 | syl2anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( ball ` D ) ` ( M ` k ) ) C_ ( ( cls ` J ) ` ( ( ball ` D ) ` ( M ` k ) ) ) ) |
| 109 | 97 | fveq2d | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( cls ` J ) ` ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 2nd ` ( M ` k ) ) ) ) = ( ( cls ` J ) ` ( ( ball ` D ) ` ( M ` k ) ) ) ) |
| 110 | 23 | ad2antlr | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( x / 2 ) e. RR+ ) |
| 111 | 110 | rpxrd | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( x / 2 ) e. RR* ) |
| 112 | simprr | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) |
|
| 113 | 1 | blsscls | |- ( ( ( D e. ( *Met ` X ) /\ ( 1st ` ( M ` k ) ) e. X ) /\ ( ( 2nd ` ( M ` k ) ) e. RR* /\ ( x / 2 ) e. RR* /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( cls ` J ) ` ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 2nd ` ( M ` k ) ) ) ) C_ ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( x / 2 ) ) ) |
| 114 | 39 44 54 111 112 113 | syl23anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( cls ` J ) ` ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( 2nd ` ( M ` k ) ) ) ) C_ ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( x / 2 ) ) ) |
| 115 | 109 114 | eqsstrrd | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( cls ` J ) ` ( ( ball ` D ) ` ( M ` k ) ) ) C_ ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( x / 2 ) ) ) |
| 116 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 117 | 116 | ad2antlr | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> x e. RR ) |
| 118 | 1 2 3 4 5 6 7 8 9 10 11 | heiborlem6 | |- ( ph -> A. t e. NN ( ( ball ` D ) ` ( M ` ( t + 1 ) ) ) C_ ( ( ball ` D ) ` ( M ` t ) ) ) |
| 119 | 19 40 118 1 | caublcls | |- ( ( ph /\ ( 1st o. M ) ( ~~>t ` J ) Y /\ k e. NN ) -> Y e. ( ( cls ` J ) ` ( ( ball ` D ) ` ( M ` k ) ) ) ) |
| 120 | 119 | 3expia | |- ( ( ph /\ ( 1st o. M ) ( ~~>t ` J ) Y ) -> ( k e. NN -> Y e. ( ( cls ` J ) ` ( ( ball ` D ) ` ( M ` k ) ) ) ) ) |
| 121 | 16 120 | mpdan | |- ( ph -> ( k e. NN -> Y e. ( ( cls ` J ) ` ( ( ball ` D ) ` ( M ` k ) ) ) ) ) |
| 122 | 121 | imp | |- ( ( ph /\ k e. NN ) -> Y e. ( ( cls ` J ) ` ( ( ball ` D ) ` ( M ` k ) ) ) ) |
| 123 | 122 | ad2ant2r | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> Y e. ( ( cls ` J ) ` ( ( ball ` D ) ` ( M ` k ) ) ) ) |
| 124 | 115 123 | sseldd | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> Y e. ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( x / 2 ) ) ) |
| 125 | blhalf | |- ( ( ( D e. ( *Met ` X ) /\ ( 1st ` ( M ` k ) ) e. X ) /\ ( x e. RR /\ Y e. ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( x / 2 ) ) C_ ( Y ( ball ` D ) x ) ) |
|
| 126 | 39 44 117 124 125 | syl22anc | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( 1st ` ( M ` k ) ) ( ball ` D ) ( x / 2 ) ) C_ ( Y ( ball ` D ) x ) ) |
| 127 | 115 126 | sstrd | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( cls ` J ) ` ( ( ball ` D ) ` ( M ` k ) ) ) C_ ( Y ( ball ` D ) x ) ) |
| 128 | 108 127 | sstrd | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( ball ` D ) ` ( M ` k ) ) C_ ( Y ( ball ` D ) x ) ) |
| 129 | 98 128 | sstrd | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( S ` k ) B k ) C_ ( Y ( ball ` D ) x ) ) |
| 130 | sstr2 | |- ( ( ( S ` k ) B k ) C_ ( Y ( ball ` D ) x ) -> ( ( Y ( ball ` D ) x ) C_ Z -> ( ( S ` k ) B k ) C_ Z ) ) |
|
| 131 | 129 130 | syl | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( Y ( ball ` D ) x ) C_ Z -> ( ( S ` k ) B k ) C_ Z ) ) |
| 132 | unisng | |- ( Z e. U -> U. { Z } = Z ) |
|
| 133 | 15 132 | syl | |- ( ph -> U. { Z } = Z ) |
| 134 | 133 | sseq2d | |- ( ph -> ( ( ( S ` k ) B k ) C_ U. { Z } <-> ( ( S ` k ) B k ) C_ Z ) ) |
| 135 | 134 | biimpar | |- ( ( ph /\ ( ( S ` k ) B k ) C_ Z ) -> ( ( S ` k ) B k ) C_ U. { Z } ) |
| 136 | 15 | snssd | |- ( ph -> { Z } C_ U ) |
| 137 | snex | |- { Z } e. _V |
|
| 138 | 137 | elpw | |- ( { Z } e. ~P U <-> { Z } C_ U ) |
| 139 | 136 138 | sylibr | |- ( ph -> { Z } e. ~P U ) |
| 140 | snfi | |- { Z } e. Fin |
|
| 141 | 140 | a1i | |- ( ph -> { Z } e. Fin ) |
| 142 | 139 141 | elind | |- ( ph -> { Z } e. ( ~P U i^i Fin ) ) |
| 143 | unieq | |- ( v = { Z } -> U. v = U. { Z } ) |
|
| 144 | 143 | sseq2d | |- ( v = { Z } -> ( ( ( S ` k ) B k ) C_ U. v <-> ( ( S ` k ) B k ) C_ U. { Z } ) ) |
| 145 | 144 | rspcev | |- ( ( { Z } e. ( ~P U i^i Fin ) /\ ( ( S ` k ) B k ) C_ U. { Z } ) -> E. v e. ( ~P U i^i Fin ) ( ( S ` k ) B k ) C_ U. v ) |
| 146 | 142 145 | sylan | |- ( ( ph /\ ( ( S ` k ) B k ) C_ U. { Z } ) -> E. v e. ( ~P U i^i Fin ) ( ( S ` k ) B k ) C_ U. v ) |
| 147 | 135 146 | syldan | |- ( ( ph /\ ( ( S ` k ) B k ) C_ Z ) -> E. v e. ( ~P U i^i Fin ) ( ( S ` k ) B k ) C_ U. v ) |
| 148 | ovex | |- ( ( S ` k ) B k ) e. _V |
|
| 149 | sseq1 | |- ( u = ( ( S ` k ) B k ) -> ( u C_ U. v <-> ( ( S ` k ) B k ) C_ U. v ) ) |
|
| 150 | 149 | rexbidv | |- ( u = ( ( S ` k ) B k ) -> ( E. v e. ( ~P U i^i Fin ) u C_ U. v <-> E. v e. ( ~P U i^i Fin ) ( ( S ` k ) B k ) C_ U. v ) ) |
| 151 | 150 | notbid | |- ( u = ( ( S ` k ) B k ) -> ( -. E. v e. ( ~P U i^i Fin ) u C_ U. v <-> -. E. v e. ( ~P U i^i Fin ) ( ( S ` k ) B k ) C_ U. v ) ) |
| 152 | 148 151 2 | elab2 | |- ( ( ( S ` k ) B k ) e. K <-> -. E. v e. ( ~P U i^i Fin ) ( ( S ` k ) B k ) C_ U. v ) |
| 153 | 152 | con2bii | |- ( E. v e. ( ~P U i^i Fin ) ( ( S ` k ) B k ) C_ U. v <-> -. ( ( S ` k ) B k ) e. K ) |
| 154 | 147 153 | sylib | |- ( ( ph /\ ( ( S ` k ) B k ) C_ Z ) -> -. ( ( S ` k ) B k ) e. K ) |
| 155 | 154 | ex | |- ( ph -> ( ( ( S ` k ) B k ) C_ Z -> -. ( ( S ` k ) B k ) e. K ) ) |
| 156 | 155 | ad2antrr | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( ( S ` k ) B k ) C_ Z -> -. ( ( S ` k ) B k ) e. K ) ) |
| 157 | 131 156 | syld | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> ( ( Y ( ball ` D ) x ) C_ Z -> -. ( ( S ` k ) B k ) e. K ) ) |
| 158 | 38 157 | mt2d | |- ( ( ( ph /\ x e. RR+ ) /\ ( k e. NN /\ ( 2nd ` ( M ` k ) ) < ( x / 2 ) ) ) -> -. ( Y ( ball ` D ) x ) C_ Z ) |
| 159 | 29 158 | rexlimddv | |- ( ( ph /\ x e. RR+ ) -> -. ( Y ( ball ` D ) x ) C_ Z ) |
| 160 | 159 | nrexdv | |- ( ph -> -. E. x e. RR+ ( Y ( ball ` D ) x ) C_ Z ) |
| 161 | 22 160 | pm2.21dd | |- ( ph -> ps ) |