This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . Substitutions for the set G . (Contributed by Jeff Madsen, 23-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| heibor.3 | ⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | ||
| heibor.4 | ⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } | ||
| heiborlem2.5 | ⊢ 𝐴 ∈ V | ||
| heiborlem2.6 | ⊢ 𝐶 ∈ V | ||
| Assertion | heiborlem2 | ⊢ ( 𝐴 𝐺 𝐶 ↔ ( 𝐶 ∈ ℕ0 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐴 𝐵 𝐶 ) ∈ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | heibor.3 | ⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | |
| 3 | heibor.4 | ⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } | |
| 4 | heiborlem2.5 | ⊢ 𝐴 ∈ V | |
| 5 | heiborlem2.6 | ⊢ 𝐶 ∈ V | |
| 6 | eleq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ↔ 𝐴 ∈ ( 𝐹 ‘ 𝑛 ) ) ) | |
| 7 | oveq1 | ⊢ ( 𝑦 = 𝐴 → ( 𝑦 𝐵 𝑛 ) = ( 𝐴 𝐵 𝑛 ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ↔ ( 𝐴 𝐵 𝑛 ) ∈ 𝐾 ) ) |
| 9 | 6 8 | 3anbi23d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) ↔ ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝐴 𝐵 𝑛 ) ∈ 𝐾 ) ) ) |
| 10 | eleq1 | ⊢ ( 𝑛 = 𝐶 → ( 𝑛 ∈ ℕ0 ↔ 𝐶 ∈ ℕ0 ) ) | |
| 11 | fveq2 | ⊢ ( 𝑛 = 𝐶 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝐶 ) ) | |
| 12 | 11 | eleq2d | ⊢ ( 𝑛 = 𝐶 → ( 𝐴 ∈ ( 𝐹 ‘ 𝑛 ) ↔ 𝐴 ∈ ( 𝐹 ‘ 𝐶 ) ) ) |
| 13 | oveq2 | ⊢ ( 𝑛 = 𝐶 → ( 𝐴 𝐵 𝑛 ) = ( 𝐴 𝐵 𝐶 ) ) | |
| 14 | 13 | eleq1d | ⊢ ( 𝑛 = 𝐶 → ( ( 𝐴 𝐵 𝑛 ) ∈ 𝐾 ↔ ( 𝐴 𝐵 𝐶 ) ∈ 𝐾 ) ) |
| 15 | 10 12 14 | 3anbi123d | ⊢ ( 𝑛 = 𝐶 → ( ( 𝑛 ∈ ℕ0 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝐴 𝐵 𝑛 ) ∈ 𝐾 ) ↔ ( 𝐶 ∈ ℕ0 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐴 𝐵 𝐶 ) ∈ 𝐾 ) ) ) |
| 16 | 4 5 9 15 3 | brab | ⊢ ( 𝐴 𝐺 𝐶 ↔ ( 𝐶 ∈ ℕ0 ∧ 𝐴 ∈ ( 𝐹 ‘ 𝐶 ) ∧ ( 𝐴 𝐵 𝐶 ) ∈ 𝐾 ) ) |