This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . Discharge the hypotheses of heiborlem8 by applying caubl to get a convergent point and adding the open cover assumption. (Contributed by Jeff Madsen, 20-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| heibor.3 | ⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | ||
| heibor.4 | ⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } | ||
| heibor.5 | ⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | ||
| heibor.6 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | ||
| heibor.7 | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) | ||
| heibor.8 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) | ||
| heibor.9 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) | ||
| heibor.10 | ⊢ ( 𝜑 → 𝐶 𝐺 0 ) | ||
| heibor.11 | ⊢ 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) | ||
| heibor.12 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) | ||
| heibor.13 | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | ||
| heiborlem9.14 | ⊢ ( 𝜑 → ∪ 𝑈 = 𝑋 ) | ||
| Assertion | heiborlem9 | ⊢ ( 𝜑 → 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | heibor.3 | ⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | |
| 3 | heibor.4 | ⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } | |
| 4 | heibor.5 | ⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | |
| 5 | heibor.6 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | |
| 6 | heibor.7 | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) | |
| 7 | heibor.8 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) | |
| 8 | heibor.9 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) | |
| 9 | heibor.10 | ⊢ ( 𝜑 → 𝐶 𝐺 0 ) | |
| 10 | heibor.11 | ⊢ 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) | |
| 11 | heibor.12 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) | |
| 12 | heibor.13 | ⊢ ( 𝜑 → 𝑈 ⊆ 𝐽 ) | |
| 13 | heiborlem9.14 | ⊢ ( 𝜑 → ∪ 𝑈 = 𝑋 ) | |
| 14 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 15 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 16 | 5 14 15 | 3syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 17 | 1 | mopntopon | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 18 | 16 17 | syl | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
| 19 | 1 2 3 4 5 6 7 8 9 10 11 | heiborlem5 | ⊢ ( 𝜑 → 𝑀 : ℕ ⟶ ( 𝑋 × ℝ+ ) ) |
| 20 | 1 2 3 4 5 6 7 8 9 10 11 | heiborlem6 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ ( 𝑘 + 1 ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) |
| 21 | 1 2 3 4 5 6 7 8 9 10 11 | heiborlem7 | ⊢ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < 𝑟 |
| 22 | 21 | a1i | ⊢ ( 𝜑 → ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < 𝑟 ) |
| 23 | 16 19 20 22 | caubl | ⊢ ( 𝜑 → ( 1st ∘ 𝑀 ) ∈ ( Cau ‘ 𝐷 ) ) |
| 24 | 1 | cmetcau | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 1st ∘ 𝑀 ) ∈ ( Cau ‘ 𝐷 ) ) → ( 1st ∘ 𝑀 ) ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 25 | 5 23 24 | syl2anc | ⊢ ( 𝜑 → ( 1st ∘ 𝑀 ) ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 26 | 1 | methaus | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus ) |
| 27 | 16 26 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Haus ) |
| 28 | lmfun | ⊢ ( 𝐽 ∈ Haus → Fun ( ⇝𝑡 ‘ 𝐽 ) ) | |
| 29 | funfvbrb | ⊢ ( Fun ( ⇝𝑡 ‘ 𝐽 ) → ( ( 1st ∘ 𝑀 ) ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ↔ ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ) ) | |
| 30 | 27 28 29 | 3syl | ⊢ ( 𝜑 → ( ( 1st ∘ 𝑀 ) ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ↔ ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ) ) |
| 31 | 25 30 | mpbid | ⊢ ( 𝜑 → ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ) |
| 32 | lmcl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ) → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑋 ) | |
| 33 | 18 31 32 | syl2anc | ⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑋 ) |
| 34 | 33 13 | eleqtrrd | ⊢ ( 𝜑 → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ ∪ 𝑈 ) |
| 35 | eluni2 | ⊢ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ ∪ 𝑈 ↔ ∃ 𝑡 ∈ 𝑈 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) | |
| 36 | 34 35 | sylib | ⊢ ( 𝜑 → ∃ 𝑡 ∈ 𝑈 ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) |
| 37 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 38 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) |
| 39 | 7 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) |
| 40 | 8 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) |
| 41 | 9 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → 𝐶 𝐺 0 ) |
| 42 | 12 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → 𝑈 ⊆ 𝐽 ) |
| 43 | fvex | ⊢ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ V | |
| 44 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) | |
| 45 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → 𝑡 ∈ 𝑈 ) | |
| 46 | 31 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → ( 1st ∘ 𝑀 ) ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ) |
| 47 | 1 2 3 4 37 38 39 40 41 10 11 42 43 44 45 46 | heiborlem8 | ⊢ ( ( 𝜑 ∧ ( 𝑡 ∈ 𝑈 ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ ( 1st ∘ 𝑀 ) ) ∈ 𝑡 ) ) → 𝜓 ) |
| 48 | 36 47 | rexlimddv | ⊢ ( 𝜑 → 𝜓 ) |