This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Generalized Heine-Borel Theorem. A metric space is compact iff it is complete and totally bounded. See heibor1 and heiborlem1 for a description of the proof. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 28-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | heibor | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ↔ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | heibor1 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) → ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) ) |
| 3 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 5 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 6 | 1 | mopntop | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 7 | 3 5 6 | 3syl | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐽 ∈ Top ) |
| 8 | 7 | adantr | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) → 𝐽 ∈ Top ) |
| 9 | istotbnd | ⊢ ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑟 ∈ ℝ+ ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) ) | |
| 10 | 9 | simprbi | ⊢ ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) → ∀ 𝑟 ∈ ℝ+ ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ) |
| 11 | 2nn | ⊢ 2 ∈ ℕ | |
| 12 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑛 ∈ ℕ0 ) → ( 2 ↑ 𝑛 ) ∈ ℕ ) | |
| 13 | 11 12 | mpan | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 ↑ 𝑛 ) ∈ ℕ ) |
| 14 | 13 | nnrpd | ⊢ ( 𝑛 ∈ ℕ0 → ( 2 ↑ 𝑛 ) ∈ ℝ+ ) |
| 15 | 14 | rpreccld | ⊢ ( 𝑛 ∈ ℕ0 → ( 1 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) |
| 16 | oveq2 | ⊢ ( 𝑟 = ( 1 / ( 2 ↑ 𝑛 ) ) → ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) | |
| 17 | 16 | eqeq2d | ⊢ ( 𝑟 = ( 1 / ( 2 ↑ 𝑛 ) ) → ( 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ↔ 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 18 | 17 | rexbidv | ⊢ ( 𝑟 = ( 1 / ( 2 ↑ 𝑛 ) ) → ( ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ↔ ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 19 | 18 | ralbidv | ⊢ ( 𝑟 = ( 1 / ( 2 ↑ 𝑛 ) ) → ( ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ↔ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 20 | 19 | anbi2d | ⊢ ( 𝑟 = ( 1 / ( 2 ↑ 𝑛 ) ) → ( ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ↔ ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 21 | 20 | rexbidv | ⊢ ( 𝑟 = ( 1 / ( 2 ↑ 𝑛 ) ) → ( ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ↔ ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 22 | 21 | rspccva | ⊢ ( ( ∀ 𝑟 ∈ ℝ+ ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) 𝑟 ) ) ∧ ( 1 / ( 2 ↑ 𝑛 ) ) ∈ ℝ+ ) → ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 23 | 10 15 22 | syl2an | ⊢ ( ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 24 | 23 | expcom | ⊢ ( 𝑛 ∈ ℕ0 → ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) → ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 25 | 24 | adantl | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) → ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 26 | oveq1 | ⊢ ( 𝑦 = ( 𝑚 ‘ 𝑣 ) → ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) | |
| 27 | 26 | eqeq2d | ⊢ ( 𝑦 = ( 𝑚 ‘ 𝑣 ) → ( 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 28 | 27 | ac6sfi | ⊢ ( ( 𝑢 ∈ Fin ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) → ∃ 𝑚 ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 29 | 28 | adantrl | ⊢ ( ( 𝑢 ∈ Fin ∧ ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∃ 𝑚 ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 30 | 29 | adantl | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ∃ 𝑚 ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 31 | simp3l | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → 𝑚 : 𝑢 ⟶ 𝑋 ) | |
| 32 | 31 | frnd | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ran 𝑚 ⊆ 𝑋 ) |
| 33 | 1 | mopnuni | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 34 | 3 5 33 | 3syl | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) |
| 35 | 34 | adantr | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑋 = ∪ 𝐽 ) |
| 36 | 35 | 3ad2ant1 | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → 𝑋 = ∪ 𝐽 ) |
| 37 | 32 36 | sseqtrd | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ran 𝑚 ⊆ ∪ 𝐽 ) |
| 38 | 1 | fvexi | ⊢ 𝐽 ∈ V |
| 39 | 38 | uniex | ⊢ ∪ 𝐽 ∈ V |
| 40 | 39 | elpw2 | ⊢ ( ran 𝑚 ∈ 𝒫 ∪ 𝐽 ↔ ran 𝑚 ⊆ ∪ 𝐽 ) |
| 41 | 37 40 | sylibr | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ran 𝑚 ∈ 𝒫 ∪ 𝐽 ) |
| 42 | simp2l | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → 𝑢 ∈ Fin ) | |
| 43 | ffn | ⊢ ( 𝑚 : 𝑢 ⟶ 𝑋 → 𝑚 Fn 𝑢 ) | |
| 44 | dffn4 | ⊢ ( 𝑚 Fn 𝑢 ↔ 𝑚 : 𝑢 –onto→ ran 𝑚 ) | |
| 45 | 43 44 | sylib | ⊢ ( 𝑚 : 𝑢 ⟶ 𝑋 → 𝑚 : 𝑢 –onto→ ran 𝑚 ) |
| 46 | fofi | ⊢ ( ( 𝑢 ∈ Fin ∧ 𝑚 : 𝑢 –onto→ ran 𝑚 ) → ran 𝑚 ∈ Fin ) | |
| 47 | 45 46 | sylan2 | ⊢ ( ( 𝑢 ∈ Fin ∧ 𝑚 : 𝑢 ⟶ 𝑋 ) → ran 𝑚 ∈ Fin ) |
| 48 | 42 31 47 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ran 𝑚 ∈ Fin ) |
| 49 | 41 48 | elind | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ran 𝑚 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) |
| 50 | 26 | eleq2d | ⊢ ( 𝑦 = ( 𝑚 ‘ 𝑣 ) → ( 𝑟 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ 𝑟 ∈ ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 51 | 50 | rexrn | ⊢ ( 𝑚 Fn 𝑢 → ( ∃ 𝑦 ∈ ran 𝑚 𝑟 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ∃ 𝑣 ∈ 𝑢 𝑟 ∈ ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 52 | eliun | ⊢ ( 𝑟 ∈ ∪ 𝑦 ∈ ran 𝑚 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ∃ 𝑦 ∈ ran 𝑚 𝑟 ∈ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) | |
| 53 | eliun | ⊢ ( 𝑟 ∈ ∪ 𝑣 ∈ 𝑢 ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ ∃ 𝑣 ∈ 𝑢 𝑟 ∈ ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) | |
| 54 | 51 52 53 | 3bitr4g | ⊢ ( 𝑚 Fn 𝑢 → ( 𝑟 ∈ ∪ 𝑦 ∈ ran 𝑚 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ 𝑟 ∈ ∪ 𝑣 ∈ 𝑢 ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 55 | 54 | eqrdv | ⊢ ( 𝑚 Fn 𝑢 → ∪ 𝑦 ∈ ran 𝑚 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) = ∪ 𝑣 ∈ 𝑢 ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 56 | 31 43 55 | 3syl | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∪ 𝑦 ∈ ran 𝑚 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) = ∪ 𝑣 ∈ 𝑢 ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 57 | simp3r | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) | |
| 58 | uniiun | ⊢ ∪ 𝑢 = ∪ 𝑣 ∈ 𝑢 𝑣 | |
| 59 | iuneq2 | ⊢ ( ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) → ∪ 𝑣 ∈ 𝑢 𝑣 = ∪ 𝑣 ∈ 𝑢 ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) | |
| 60 | 58 59 | eqtrid | ⊢ ( ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) → ∪ 𝑢 = ∪ 𝑣 ∈ 𝑢 ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 61 | 57 60 | syl | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∪ 𝑢 = ∪ 𝑣 ∈ 𝑢 ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 62 | simp2r | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∪ 𝑢 = 𝑋 ) | |
| 63 | 56 61 62 | 3eqtr2rd | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → 𝑋 = ∪ 𝑦 ∈ ran 𝑚 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 64 | iuneq1 | ⊢ ( 𝑡 = ran 𝑚 → ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) = ∪ 𝑦 ∈ ran 𝑚 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) | |
| 65 | 64 | rspceeqv | ⊢ ( ( ran 𝑚 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ 𝑋 = ∪ 𝑦 ∈ ran 𝑚 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) → ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 66 | 49 63 65 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ∧ ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 67 | 66 | 3expia | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ∪ 𝑢 = 𝑋 ) ) → ( ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) → ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 68 | 67 | adantrrr | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ( ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) → ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 69 | 68 | exlimdv | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ( ∃ 𝑚 ( 𝑚 : 𝑢 ⟶ 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 𝑣 = ( ( 𝑚 ‘ 𝑣 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) → ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 70 | 30 69 | mpd | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝑢 ∈ Fin ∧ ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) → ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 71 | 70 | rexlimdvaa | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( ∃ 𝑢 ∈ Fin ( ∪ 𝑢 = 𝑋 ∧ ∀ 𝑣 ∈ 𝑢 ∃ 𝑦 ∈ 𝑋 𝑣 = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) → ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 72 | 25 71 | syld | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) → ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 73 | 72 | ralrimdva | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) → ∀ 𝑛 ∈ ℕ0 ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 74 | 39 | pwex | ⊢ 𝒫 ∪ 𝐽 ∈ V |
| 75 | 74 | inex1 | ⊢ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∈ V |
| 76 | nn0ennn | ⊢ ℕ0 ≈ ℕ | |
| 77 | nnenom | ⊢ ℕ ≈ ω | |
| 78 | 76 77 | entri | ⊢ ℕ0 ≈ ω |
| 79 | iuneq1 | ⊢ ( 𝑡 = ( 𝑚 ‘ 𝑛 ) → ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) | |
| 80 | 79 | eqeq2d | ⊢ ( 𝑡 = ( 𝑚 ‘ 𝑛 ) → ( 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ↔ 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 81 | 75 78 80 | axcc4 | ⊢ ( ∀ 𝑛 ∈ ℕ0 ∃ 𝑡 ∈ ( 𝒫 ∪ 𝐽 ∩ Fin ) 𝑋 = ∪ 𝑦 ∈ 𝑡 ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) → ∃ 𝑚 ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 82 | 73 81 | syl6 | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) → ∃ 𝑚 ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ) |
| 83 | elpwi | ⊢ ( 𝑟 ∈ 𝒫 𝐽 → 𝑟 ⊆ 𝐽 ) | |
| 84 | eqid | ⊢ { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | |
| 85 | eqid | ⊢ { 〈 𝑡 , 𝑘 〉 ∣ ( 𝑘 ∈ ℕ0 ∧ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ∧ ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑘 ) ∈ { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } ) } = { 〈 𝑡 , 𝑘 〉 ∣ ( 𝑘 ∈ ℕ0 ∧ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ∧ ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑘 ) ∈ { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } ) } | |
| 86 | eqid | ⊢ ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | |
| 87 | simpl | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | |
| 88 | 34 | pweqd | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝒫 𝑋 = 𝒫 ∪ 𝐽 ) |
| 89 | 88 | ineq1d | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( 𝒫 𝑋 ∩ Fin ) = ( 𝒫 ∪ 𝐽 ∩ Fin ) ) |
| 90 | 89 | feq3d | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( 𝑚 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ↔ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ) |
| 91 | 90 | biimpar | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) → 𝑚 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) |
| 92 | 91 | adantrr | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → 𝑚 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) |
| 93 | oveq1 | ⊢ ( 𝑡 = 𝑦 → ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ( 𝑦 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) ) | |
| 94 | 93 | cbviunv | ⊢ ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) |
| 95 | id | ⊢ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) → 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) | |
| 96 | inss1 | ⊢ ( 𝒫 ∪ 𝐽 ∩ Fin ) ⊆ 𝒫 ∪ 𝐽 | |
| 97 | 96 88 | sseqtrrid | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( 𝒫 ∪ 𝐽 ∩ Fin ) ⊆ 𝒫 𝑋 ) |
| 98 | fss | ⊢ ( ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ( 𝒫 ∪ 𝐽 ∩ Fin ) ⊆ 𝒫 𝑋 ) → 𝑚 : ℕ0 ⟶ 𝒫 𝑋 ) | |
| 99 | 95 97 98 | syl2anr | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) → 𝑚 : ℕ0 ⟶ 𝒫 𝑋 ) |
| 100 | 99 | ffvelcdmda | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑚 ‘ 𝑛 ) ∈ 𝒫 𝑋 ) |
| 101 | 100 | elpwid | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑚 ‘ 𝑛 ) ⊆ 𝑋 ) |
| 102 | 101 | sselda | ⊢ ( ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ) → 𝑦 ∈ 𝑋 ) |
| 103 | simplr | ⊢ ( ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ) → 𝑛 ∈ ℕ0 ) | |
| 104 | oveq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | |
| 105 | oveq2 | ⊢ ( 𝑚 = 𝑛 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑛 ) ) | |
| 106 | 105 | oveq2d | ⊢ ( 𝑚 = 𝑛 → ( 1 / ( 2 ↑ 𝑚 ) ) = ( 1 / ( 2 ↑ 𝑛 ) ) ) |
| 107 | 106 | oveq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 108 | ovex | ⊢ ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ∈ V | |
| 109 | 104 107 86 108 | ovmpo | ⊢ ( ( 𝑦 ∈ 𝑋 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑦 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 110 | 102 103 109 | syl2anc | ⊢ ( ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) ∧ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ) → ( 𝑦 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 111 | 110 | iuneq2dv | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) → ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 112 | 94 111 | eqtrid | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) → ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) |
| 113 | 112 | eqeq2d | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) ↔ 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) |
| 114 | 113 | biimprd | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) → 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) ) ) |
| 115 | 114 | ralimdva | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ) → ( ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) ) ) |
| 116 | 115 | impr | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) ) |
| 117 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑚 ‘ 𝑛 ) = ( 𝑚 ‘ 𝑘 ) ) | |
| 118 | 117 | iuneq1d | ⊢ ( 𝑛 = 𝑘 → ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) ) |
| 119 | simpl | ⊢ ( ( 𝑛 = 𝑘 ∧ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ) → 𝑛 = 𝑘 ) | |
| 120 | 119 | oveq2d | ⊢ ( ( 𝑛 = 𝑘 ∧ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ) → ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑘 ) ) |
| 121 | 120 | iuneq2dv | ⊢ ( 𝑛 = 𝑘 → ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑘 ) ) |
| 122 | 118 121 | eqtrd | ⊢ ( 𝑛 = 𝑘 → ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑘 ) ) |
| 123 | 122 | eqeq2d | ⊢ ( 𝑛 = 𝑘 → ( 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) ↔ 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑘 ) ) ) |
| 124 | 123 | cbvralvw | ⊢ ( ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑛 ) ↔ ∀ 𝑘 ∈ ℕ0 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑘 ) ) |
| 125 | 116 124 | sylib | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∀ 𝑘 ∈ ℕ0 𝑋 = ∪ 𝑡 ∈ ( 𝑚 ‘ 𝑘 ) ( 𝑡 ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) 𝑘 ) ) |
| 126 | 1 84 85 86 87 92 125 | heiborlem10 | ⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) ∧ ( 𝑟 ⊆ 𝐽 ∧ ∪ 𝐽 = ∪ 𝑟 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) |
| 127 | 126 | exp32 | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ( 𝑟 ⊆ 𝐽 → ( ∪ 𝐽 = ∪ 𝑟 → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) ) |
| 128 | 83 127 | syl5 | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ( 𝑟 ∈ 𝒫 𝐽 → ( ∪ 𝐽 = ∪ 𝑟 → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) ) |
| 129 | 128 | ralrimiv | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) ) → ∀ 𝑟 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑟 → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) |
| 130 | 129 | ex | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) → ∀ 𝑟 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑟 → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) ) |
| 131 | 130 | exlimdv | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( ∃ 𝑚 ( 𝑚 : ℕ0 ⟶ ( 𝒫 ∪ 𝐽 ∩ Fin ) ∧ ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝑚 ‘ 𝑛 ) ( 𝑦 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑛 ) ) ) ) → ∀ 𝑟 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑟 → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) ) |
| 132 | 82 131 | syld | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ( 𝐷 ∈ ( TotBnd ‘ 𝑋 ) → ∀ 𝑟 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑟 → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) ) |
| 133 | 132 | imp | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) → ∀ 𝑟 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑟 → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) |
| 134 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 135 | 134 | iscmp | ⊢ ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑟 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑟 → ∃ 𝑣 ∈ ( 𝒫 𝑟 ∩ Fin ) ∪ 𝐽 = ∪ 𝑣 ) ) ) |
| 136 | 8 133 135 | sylanbrc | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) → 𝐽 ∈ Comp ) |
| 137 | 4 136 | jca | ⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) → ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ) |
| 138 | 2 137 | impbii | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝐽 ∈ Comp ) ↔ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐷 ∈ ( TotBnd ‘ 𝑋 ) ) ) |