This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . Since the sequence of balls connected by the function T ensures that each ball nontrivially intersects with the next (since the empty set has a finite subcover, the intersection of any two successive balls in the sequence is nonempty), and each ball is half the size of the previous one, the distance between the centers is at most 3 / 2 times the size of the larger, and so if we expand each ball by a factor of 3 we get a nested sequence of balls. (Contributed by Jeff Madsen, 23-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| heibor.3 | ⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | ||
| heibor.4 | ⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } | ||
| heibor.5 | ⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | ||
| heibor.6 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | ||
| heibor.7 | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) | ||
| heibor.8 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) | ||
| heibor.9 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) | ||
| heibor.10 | ⊢ ( 𝜑 → 𝐶 𝐺 0 ) | ||
| heibor.11 | ⊢ 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) | ||
| heibor.12 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) | ||
| Assertion | heiborlem6 | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ ( 𝑘 + 1 ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | heibor.3 | ⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | |
| 3 | heibor.4 | ⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } | |
| 4 | heibor.5 | ⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | |
| 5 | heibor.6 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | |
| 6 | heibor.7 | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) | |
| 7 | heibor.8 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) | |
| 8 | heibor.9 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) | |
| 9 | heibor.10 | ⊢ ( 𝜑 → 𝐶 𝐺 0 ) | |
| 10 | heibor.11 | ⊢ 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) | |
| 11 | heibor.12 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) | |
| 12 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 13 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
| 14 | 5 13 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 15 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 18 | inss1 | ⊢ ( 𝒫 𝑋 ∩ Fin ) ⊆ 𝒫 𝑋 | |
| 19 | fss | ⊢ ( ( 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ∧ ( 𝒫 𝑋 ∩ Fin ) ⊆ 𝒫 𝑋 ) → 𝐹 : ℕ0 ⟶ 𝒫 𝑋 ) | |
| 20 | 6 18 19 | sylancl | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ 𝒫 𝑋 ) |
| 21 | peano2nn0 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ0 ) | |
| 22 | ffvelcdm | ⊢ ( ( 𝐹 : ℕ0 ⟶ 𝒫 𝑋 ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ 𝒫 𝑋 ) | |
| 23 | 20 21 22 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∈ 𝒫 𝑋 ) |
| 24 | 23 | elpwid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ ( 𝑘 + 1 ) ) ⊆ 𝑋 ) |
| 25 | 1 2 3 4 5 6 7 8 9 10 | heiborlem4 | ⊢ ( ( 𝜑 ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐺 ( 𝑘 + 1 ) ) |
| 26 | 21 25 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐺 ( 𝑘 + 1 ) ) |
| 27 | fvex | ⊢ ( 𝑆 ‘ ( 𝑘 + 1 ) ) ∈ V | |
| 28 | ovex | ⊢ ( 𝑘 + 1 ) ∈ V | |
| 29 | 1 2 3 27 28 | heiborlem2 | ⊢ ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐺 ( 𝑘 + 1 ) ↔ ( ( 𝑘 + 1 ) ∈ ℕ0 ∧ ( 𝑆 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∧ ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐵 ( 𝑘 + 1 ) ) ∈ 𝐾 ) ) |
| 30 | 29 | simp2bi | ⊢ ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐺 ( 𝑘 + 1 ) → ( 𝑆 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 31 | 26 30 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ ( 𝑘 + 1 ) ) ∈ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 32 | 24 31 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ) |
| 33 | 20 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝒫 𝑋 ) |
| 34 | 33 | elpwid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐹 ‘ 𝑘 ) ⊆ 𝑋 ) |
| 35 | 1 2 3 4 5 6 7 8 9 10 | heiborlem4 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 ) |
| 36 | fvex | ⊢ ( 𝑆 ‘ 𝑘 ) ∈ V | |
| 37 | vex | ⊢ 𝑘 ∈ V | |
| 38 | 1 2 3 36 37 | heiborlem2 | ⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 ↔ ( 𝑘 ∈ ℕ0 ∧ ( 𝑆 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ∧ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∈ 𝐾 ) ) |
| 39 | 38 | simp2bi | ⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 → ( 𝑆 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 40 | 35 39 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑘 ) ∈ ( 𝐹 ‘ 𝑘 ) ) |
| 41 | 34 40 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ) |
| 42 | 3re | ⊢ 3 ∈ ℝ | |
| 43 | 2nn | ⊢ 2 ∈ ℕ | |
| 44 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℕ ) | |
| 45 | 43 21 44 | sylancr | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℕ ) |
| 46 | 45 | nnrpd | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ+ ) |
| 47 | 46 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ+ ) |
| 48 | rerpdivcl | ⊢ ( ( 3 ∈ ℝ ∧ ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ+ ) → ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ ) | |
| 49 | 42 47 48 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 50 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) | |
| 51 | 43 50 | mpan | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
| 52 | 51 | nnrpd | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 ↑ 𝑘 ) ∈ ℝ+ ) |
| 53 | 52 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℝ+ ) |
| 54 | rerpdivcl | ⊢ ( ( 3 ∈ ℝ ∧ ( 2 ↑ 𝑘 ) ∈ ℝ+ ) → ( 3 / ( 2 ↑ 𝑘 ) ) ∈ ℝ ) | |
| 55 | 42 53 54 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 3 / ( 2 ↑ 𝑘 ) ) ∈ ℝ ) |
| 56 | oveq1 | ⊢ ( 𝑧 = ( 𝑆 ‘ 𝑘 ) → ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | |
| 57 | oveq2 | ⊢ ( 𝑚 = 𝑘 → ( 2 ↑ 𝑚 ) = ( 2 ↑ 𝑘 ) ) | |
| 58 | 57 | oveq2d | ⊢ ( 𝑚 = 𝑘 → ( 1 / ( 2 ↑ 𝑚 ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 59 | 58 | oveq2d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 60 | ovex | ⊢ ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∈ V | |
| 61 | 56 59 4 60 | ovmpo | ⊢ ( ( ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) = ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 62 | 41 61 | sylancom | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) = ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 63 | df-br | ⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 ↔ 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 ∈ 𝐺 ) | |
| 64 | fveq2 | ⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( 𝑇 ‘ 𝑥 ) = ( 𝑇 ‘ 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 ) ) | |
| 65 | df-ov | ⊢ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) = ( 𝑇 ‘ 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 ) | |
| 66 | 64 65 | eqtr4di | ⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( 𝑇 ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) |
| 67 | 36 37 | op2ndd | ⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( 2nd ‘ 𝑥 ) = 𝑘 ) |
| 68 | 67 | oveq1d | ⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( ( 2nd ‘ 𝑥 ) + 1 ) = ( 𝑘 + 1 ) ) |
| 69 | 66 68 | breq12d | ⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ↔ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ) ) |
| 70 | fveq2 | ⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( 𝐵 ‘ 𝑥 ) = ( 𝐵 ‘ 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 ) ) | |
| 71 | df-ov | ⊢ ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) = ( 𝐵 ‘ 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 ) | |
| 72 | 70 71 | eqtr4di | ⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( 𝐵 ‘ 𝑥 ) = ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ) |
| 73 | 66 68 | oveq12d | ⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) = ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) |
| 74 | 72 73 | ineq12d | ⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ) |
| 75 | 74 | eleq1d | ⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ↔ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ) ) |
| 76 | 69 75 | anbi12d | ⊢ ( 𝑥 = 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 → ( ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ↔ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ∧ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ) ) ) |
| 77 | 76 | rspccv | ⊢ ( ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) → ( 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 ∈ 𝐺 → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ∧ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ) ) ) |
| 78 | 8 77 | syl | ⊢ ( 𝜑 → ( 〈 ( 𝑆 ‘ 𝑘 ) , 𝑘 〉 ∈ 𝐺 → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ∧ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ) ) ) |
| 79 | 63 78 | biimtrid | ⊢ ( 𝜑 → ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ∧ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ) ) ) |
| 80 | 79 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝐺 𝑘 → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ∧ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ) ) ) |
| 81 | 35 80 | mpd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ∧ ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ) ) |
| 82 | 81 | simpld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ) |
| 83 | ovex | ⊢ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ V | |
| 84 | 1 2 3 83 28 | heiborlem2 | ⊢ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) ↔ ( ( 𝑘 + 1 ) ∈ ℕ0 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ∧ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ∈ 𝐾 ) ) |
| 85 | 84 | simp2bi | ⊢ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐺 ( 𝑘 + 1 ) → ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 86 | 82 85 | syl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 87 | 24 86 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ 𝑋 ) |
| 88 | 21 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 + 1 ) ∈ ℕ0 ) |
| 89 | oveq1 | ⊢ ( 𝑧 = ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) → ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | |
| 90 | oveq2 | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 2 ↑ 𝑚 ) = ( 2 ↑ ( 𝑘 + 1 ) ) ) | |
| 91 | 90 | oveq2d | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 1 / ( 2 ↑ 𝑚 ) ) = ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
| 92 | 91 | oveq2d | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 93 | ovex | ⊢ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ∈ V | |
| 94 | 89 92 4 93 | ovmpo | ⊢ ( ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ 𝑋 ∧ ( 𝑘 + 1 ) ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) = ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 95 | 87 88 94 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) = ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 96 | 62 95 | ineq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) = ( ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 97 | 81 | simprd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ) |
| 98 | 0elpw | ⊢ ∅ ∈ 𝒫 𝑈 | |
| 99 | 0fi | ⊢ ∅ ∈ Fin | |
| 100 | elin | ⊢ ( ∅ ∈ ( 𝒫 𝑈 ∩ Fin ) ↔ ( ∅ ∈ 𝒫 𝑈 ∧ ∅ ∈ Fin ) ) | |
| 101 | 98 99 100 | mpbir2an | ⊢ ∅ ∈ ( 𝒫 𝑈 ∩ Fin ) |
| 102 | 0ss | ⊢ ∅ ⊆ ∪ ∅ | |
| 103 | unieq | ⊢ ( 𝑣 = ∅ → ∪ 𝑣 = ∪ ∅ ) | |
| 104 | 103 | sseq2d | ⊢ ( 𝑣 = ∅ → ( ∅ ⊆ ∪ 𝑣 ↔ ∅ ⊆ ∪ ∅ ) ) |
| 105 | 104 | rspcev | ⊢ ( ( ∅ ∈ ( 𝒫 𝑈 ∩ Fin ) ∧ ∅ ⊆ ∪ ∅ ) → ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∅ ⊆ ∪ 𝑣 ) |
| 106 | 101 102 105 | mp2an | ⊢ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∅ ⊆ ∪ 𝑣 |
| 107 | 0ex | ⊢ ∅ ∈ V | |
| 108 | sseq1 | ⊢ ( 𝑢 = ∅ → ( 𝑢 ⊆ ∪ 𝑣 ↔ ∅ ⊆ ∪ 𝑣 ) ) | |
| 109 | 108 | rexbidv | ⊢ ( 𝑢 = ∅ → ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∅ ⊆ ∪ 𝑣 ) ) |
| 110 | 109 | notbid | ⊢ ( 𝑢 = ∅ → ( ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∅ ⊆ ∪ 𝑣 ) ) |
| 111 | 107 110 2 | elab2 | ⊢ ( ∅ ∈ 𝐾 ↔ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∅ ⊆ ∪ 𝑣 ) |
| 112 | 111 | con2bii | ⊢ ( ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) ∅ ⊆ ∪ 𝑣 ↔ ¬ ∅ ∈ 𝐾 ) |
| 113 | 106 112 | mpbi | ⊢ ¬ ∅ ∈ 𝐾 |
| 114 | nelne2 | ⊢ ( ( ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ∈ 𝐾 ∧ ¬ ∅ ∈ 𝐾 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ≠ ∅ ) | |
| 115 | 97 113 114 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝐵 𝑘 ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐵 ( 𝑘 + 1 ) ) ) ≠ ∅ ) |
| 116 | 96 115 | eqnetrrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) ≠ ∅ ) |
| 117 | 52 | rpreccld | ⊢ ( 𝑘 ∈ ℕ0 → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ+ ) |
| 118 | 117 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ+ ) |
| 119 | 118 | rpred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ ) |
| 120 | 46 | rpreccld | ⊢ ( 𝑘 ∈ ℕ0 → ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ+ ) |
| 121 | 120 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ+ ) |
| 122 | 121 | rpred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ ) |
| 123 | rexadd | ⊢ ( ( ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ ∧ ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ ) → ( ( 1 / ( 2 ↑ 𝑘 ) ) +𝑒 ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) = ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) | |
| 124 | 119 122 123 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / ( 2 ↑ 𝑘 ) ) +𝑒 ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) = ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 125 | 124 | breq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 1 / ( 2 ↑ 𝑘 ) ) +𝑒 ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ↔ ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ) ) |
| 126 | 118 | rpxrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ* ) |
| 127 | 121 | rpxrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ* ) |
| 128 | bldisj | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ 𝑋 ) ∧ ( ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ* ∧ ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ* ∧ ( ( 1 / ( 2 ↑ 𝑘 ) ) +𝑒 ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ) ) → ( ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) = ∅ ) | |
| 129 | 128 | 3exp2 | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ 𝑋 ) → ( ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ* → ( ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ* → ( ( ( 1 / ( 2 ↑ 𝑘 ) ) +𝑒 ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) → ( ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) = ∅ ) ) ) ) |
| 130 | 129 | imp32 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ 𝑋 ) ∧ ( ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ* ∧ ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ* ) ) → ( ( ( 1 / ( 2 ↑ 𝑘 ) ) +𝑒 ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) → ( ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) = ∅ ) ) |
| 131 | 17 41 87 126 127 130 | syl32anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 1 / ( 2 ↑ 𝑘 ) ) +𝑒 ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) → ( ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) = ∅ ) ) |
| 132 | 125 131 | sylbird | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) → ( ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) = ∅ ) ) |
| 133 | 132 | necon3ad | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑘 ) ) ) ∩ ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) ≠ ∅ → ¬ ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ) ) |
| 134 | 116 133 | mpd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ¬ ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ) |
| 135 | 118 121 | rpaddcld | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ∈ ℝ+ ) |
| 136 | 135 | rpred | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ∈ ℝ ) |
| 137 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 138 | metcl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ 𝑋 ) → ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ∈ ℝ ) | |
| 139 | 137 41 87 138 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ∈ ℝ ) |
| 140 | 136 139 | letrid | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ∨ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ≤ ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 141 | 140 | ord | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ¬ ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ≤ ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) → ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ≤ ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) ) |
| 142 | 134 141 | mpd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ≤ ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 143 | seqp1 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 0 ) → ( seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) ‘ 𝑘 ) 𝑇 ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ‘ ( 𝑘 + 1 ) ) ) ) | |
| 144 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 145 | 143 144 | eleq2s | ⊢ ( 𝑘 ∈ ℕ0 → ( seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) ‘ 𝑘 ) 𝑇 ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 146 | 10 | fveq1i | ⊢ ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) ‘ ( 𝑘 + 1 ) ) |
| 147 | 10 | fveq1i | ⊢ ( 𝑆 ‘ 𝑘 ) = ( seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) ‘ 𝑘 ) |
| 148 | 147 | oveq1i | ⊢ ( ( 𝑆 ‘ 𝑘 ) 𝑇 ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ‘ ( 𝑘 + 1 ) ) ) = ( ( seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) ‘ 𝑘 ) 𝑇 ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ‘ ( 𝑘 + 1 ) ) ) |
| 149 | 145 146 148 | 3eqtr4g | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 ‘ 𝑘 ) 𝑇 ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 150 | eqid | ⊢ ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) = ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) | |
| 151 | eqeq1 | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝑚 = 0 ↔ ( 𝑘 + 1 ) = 0 ) ) | |
| 152 | oveq1 | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → ( 𝑚 − 1 ) = ( ( 𝑘 + 1 ) − 1 ) ) | |
| 153 | 151 152 | ifbieq2d | ⊢ ( 𝑚 = ( 𝑘 + 1 ) → if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) = if ( ( 𝑘 + 1 ) = 0 , 𝐶 , ( ( 𝑘 + 1 ) − 1 ) ) ) |
| 154 | nn0p1nn | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 155 | nnne0 | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( 𝑘 + 1 ) ≠ 0 ) | |
| 156 | 155 | neneqd | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ¬ ( 𝑘 + 1 ) = 0 ) |
| 157 | 154 156 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ¬ ( 𝑘 + 1 ) = 0 ) |
| 158 | 157 | iffalsed | ⊢ ( 𝑘 ∈ ℕ0 → if ( ( 𝑘 + 1 ) = 0 , 𝐶 , ( ( 𝑘 + 1 ) − 1 ) ) = ( ( 𝑘 + 1 ) − 1 ) ) |
| 159 | ovex | ⊢ ( ( 𝑘 + 1 ) − 1 ) ∈ V | |
| 160 | 158 159 | eqeltrdi | ⊢ ( 𝑘 ∈ ℕ0 → if ( ( 𝑘 + 1 ) = 0 , 𝐶 , ( ( 𝑘 + 1 ) − 1 ) ) ∈ V ) |
| 161 | 150 153 21 160 | fvmptd3 | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ‘ ( 𝑘 + 1 ) ) = if ( ( 𝑘 + 1 ) = 0 , 𝐶 , ( ( 𝑘 + 1 ) − 1 ) ) ) |
| 162 | nn0cn | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℂ ) | |
| 163 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 164 | pncan | ⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) | |
| 165 | 162 163 164 | sylancl | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑘 + 1 ) − 1 ) = 𝑘 ) |
| 166 | 161 158 165 | 3eqtrd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ‘ ( 𝑘 + 1 ) ) = 𝑘 ) |
| 167 | 166 | oveq2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑆 ‘ 𝑘 ) 𝑇 ( ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) |
| 168 | 149 167 | eqtrd | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) |
| 169 | 168 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑆 ‘ ( 𝑘 + 1 ) ) = ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) |
| 170 | 169 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐷 ( 𝑆 ‘ 𝑘 ) ) = ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐷 ( 𝑆 ‘ 𝑘 ) ) ) |
| 171 | metsym | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ∈ 𝑋 ∧ ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐷 ( 𝑆 ‘ 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ) | |
| 172 | 137 87 41 171 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) 𝐷 ( 𝑆 ‘ 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ) |
| 173 | 170 172 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐷 ( 𝑆 ‘ 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) 𝐷 ( ( 𝑆 ‘ 𝑘 ) 𝑇 𝑘 ) ) ) |
| 174 | 3cn | ⊢ 3 ∈ ℂ | |
| 175 | 174 | 2timesi | ⊢ ( 2 · 3 ) = ( 3 + 3 ) |
| 176 | 175 | oveq1i | ⊢ ( ( 2 · 3 ) − 3 ) = ( ( 3 + 3 ) − 3 ) |
| 177 | 174 174 | pncan3oi | ⊢ ( ( 3 + 3 ) − 3 ) = 3 |
| 178 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 179 | 176 177 178 | 3eqtri | ⊢ ( ( 2 · 3 ) − 3 ) = ( 2 + 1 ) |
| 180 | 179 | oveq1i | ⊢ ( ( ( 2 · 3 ) − 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( 2 + 1 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) |
| 181 | rpcn | ⊢ ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ+ → ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ) | |
| 182 | rpne0 | ⊢ ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ+ → ( 2 ↑ ( 𝑘 + 1 ) ) ≠ 0 ) | |
| 183 | 2cn | ⊢ 2 ∈ ℂ | |
| 184 | 183 174 | mulcli | ⊢ ( 2 · 3 ) ∈ ℂ |
| 185 | divsubdir | ⊢ ( ( ( 2 · 3 ) ∈ ℂ ∧ 3 ∈ ℂ ∧ ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ∧ ( 2 ↑ ( 𝑘 + 1 ) ) ≠ 0 ) ) → ( ( ( 2 · 3 ) − 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( ( 2 · 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) | |
| 186 | 184 174 185 | mp3an12 | ⊢ ( ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ∧ ( 2 ↑ ( 𝑘 + 1 ) ) ≠ 0 ) → ( ( ( 2 · 3 ) − 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( ( 2 · 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 187 | 181 182 186 | syl2anc | ⊢ ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ+ → ( ( ( 2 · 3 ) − 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( ( 2 · 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 188 | 46 187 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 2 · 3 ) − 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( ( 2 · 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 189 | divdir | ⊢ ( ( 2 ∈ ℂ ∧ 1 ∈ ℂ ∧ ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ∧ ( 2 ↑ ( 𝑘 + 1 ) ) ≠ 0 ) ) → ( ( 2 + 1 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( 2 / ( 2 ↑ ( 𝑘 + 1 ) ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) | |
| 190 | 183 163 189 | mp3an12 | ⊢ ( ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℂ ∧ ( 2 ↑ ( 𝑘 + 1 ) ) ≠ 0 ) → ( ( 2 + 1 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( 2 / ( 2 ↑ ( 𝑘 + 1 ) ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 191 | 181 182 190 | syl2anc | ⊢ ( ( 2 ↑ ( 𝑘 + 1 ) ) ∈ ℝ+ → ( ( 2 + 1 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( 2 / ( 2 ↑ ( 𝑘 + 1 ) ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 192 | 46 191 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 + 1 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) = ( ( 2 / ( 2 ↑ ( 𝑘 + 1 ) ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 193 | 180 188 192 | 3eqtr3a | ⊢ ( 𝑘 ∈ ℕ0 → ( ( ( 2 · 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) = ( ( 2 / ( 2 ↑ ( 𝑘 + 1 ) ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 194 | rpcn | ⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( 2 ↑ 𝑘 ) ∈ ℂ ) | |
| 195 | rpne0 | ⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( 2 ↑ 𝑘 ) ≠ 0 ) | |
| 196 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 197 | divcan5 | ⊢ ( ( 3 ∈ ℂ ∧ ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 2 · 3 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) | |
| 198 | 174 196 197 | mp3an13 | ⊢ ( ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ≠ 0 ) → ( ( 2 · 3 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 199 | 194 195 198 | syl2anc | ⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( ( 2 · 3 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 200 | 52 199 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 3 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 201 | 52 194 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 ↑ 𝑘 ) ∈ ℂ ) |
| 202 | mulcom | ⊢ ( ( 2 ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ∈ ℂ ) → ( 2 · ( 2 ↑ 𝑘 ) ) = ( ( 2 ↑ 𝑘 ) · 2 ) ) | |
| 203 | 183 201 202 | sylancr | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 · ( 2 ↑ 𝑘 ) ) = ( ( 2 ↑ 𝑘 ) · 2 ) ) |
| 204 | expp1 | ⊢ ( ( 2 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ ( 𝑘 + 1 ) ) = ( ( 2 ↑ 𝑘 ) · 2 ) ) | |
| 205 | 183 204 | mpan | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 ↑ ( 𝑘 + 1 ) ) = ( ( 2 ↑ 𝑘 ) · 2 ) ) |
| 206 | 203 205 | eqtr4d | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 · ( 2 ↑ 𝑘 ) ) = ( 2 ↑ ( 𝑘 + 1 ) ) ) |
| 207 | 206 | oveq2d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 3 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( ( 2 · 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
| 208 | 200 207 | eqtr3d | ⊢ ( 𝑘 ∈ ℕ0 → ( 3 / ( 2 ↑ 𝑘 ) ) = ( ( 2 · 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
| 209 | 208 | oveq1d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 / ( 2 ↑ 𝑘 ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) = ( ( ( 2 · 3 ) / ( 2 ↑ ( 𝑘 + 1 ) ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 210 | divcan5 | ⊢ ( ( 1 ∈ ℂ ∧ ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ≠ 0 ) ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( 2 · 1 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) | |
| 211 | 163 196 210 | mp3an13 | ⊢ ( ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ≠ 0 ) → ( ( 2 · 1 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 212 | 194 195 211 | syl2anc | ⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( ( 2 · 1 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 213 | 52 212 | syl | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 1 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 1 / ( 2 ↑ 𝑘 ) ) ) |
| 214 | 2t1e2 | ⊢ ( 2 · 1 ) = 2 | |
| 215 | 214 | a1i | ⊢ ( 𝑘 ∈ ℕ0 → ( 2 · 1 ) = 2 ) |
| 216 | 215 206 | oveq12d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 2 · 1 ) / ( 2 · ( 2 ↑ 𝑘 ) ) ) = ( 2 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
| 217 | 213 216 | eqtr3d | ⊢ ( 𝑘 ∈ ℕ0 → ( 1 / ( 2 ↑ 𝑘 ) ) = ( 2 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
| 218 | 217 | oveq1d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) = ( ( 2 / ( 2 ↑ ( 𝑘 + 1 ) ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 219 | 193 209 218 | 3eqtr4d | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 3 / ( 2 ↑ 𝑘 ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) = ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 220 | 219 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 3 / ( 2 ↑ 𝑘 ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) = ( ( 1 / ( 2 ↑ 𝑘 ) ) + ( 1 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 221 | 142 173 220 | 3brtr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐷 ( 𝑆 ‘ 𝑘 ) ) ≤ ( ( 3 / ( 2 ↑ 𝑘 ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 222 | blss2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( 𝑆 ‘ ( 𝑘 + 1 ) ) ∈ 𝑋 ∧ ( 𝑆 ‘ 𝑘 ) ∈ 𝑋 ) ∧ ( ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ∈ ℝ ∧ ( 3 / ( 2 ↑ 𝑘 ) ) ∈ ℝ ∧ ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) 𝐷 ( 𝑆 ‘ 𝑘 ) ) ≤ ( ( 3 / ( 2 ↑ 𝑘 ) ) − ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) ) → ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ⊆ ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ 𝑘 ) ) ) ) | |
| 223 | 17 32 41 49 55 221 222 | syl33anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ⊆ ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ 𝑘 ) ) ) ) |
| 224 | 12 223 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ⊆ ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ 𝑘 ) ) ) ) |
| 225 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 226 | fveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝑆 ‘ 𝑛 ) = ( 𝑆 ‘ ( 𝑘 + 1 ) ) ) | |
| 227 | oveq2 | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 2 ↑ 𝑛 ) = ( 2 ↑ ( 𝑘 + 1 ) ) ) | |
| 228 | 227 | oveq2d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 3 / ( 2 ↑ 𝑛 ) ) = ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) |
| 229 | 226 228 | opeq12d | ⊢ ( 𝑛 = ( 𝑘 + 1 ) → 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 = 〈 ( 𝑆 ‘ ( 𝑘 + 1 ) ) , ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) 〉 ) |
| 230 | opex | ⊢ 〈 ( 𝑆 ‘ ( 𝑘 + 1 ) ) , ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) 〉 ∈ V | |
| 231 | 229 11 230 | fvmpt | ⊢ ( ( 𝑘 + 1 ) ∈ ℕ → ( 𝑀 ‘ ( 𝑘 + 1 ) ) = 〈 ( 𝑆 ‘ ( 𝑘 + 1 ) ) , ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) 〉 ) |
| 232 | 225 231 | syl | ⊢ ( 𝑘 ∈ ℕ → ( 𝑀 ‘ ( 𝑘 + 1 ) ) = 〈 ( 𝑆 ‘ ( 𝑘 + 1 ) ) , ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) 〉 ) |
| 233 | 232 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝑀 ‘ ( 𝑘 + 1 ) ) = 〈 ( 𝑆 ‘ ( 𝑘 + 1 ) ) , ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) 〉 ) |
| 234 | 233 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ ( 𝑘 + 1 ) ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 𝑆 ‘ ( 𝑘 + 1 ) ) , ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) 〉 ) ) |
| 235 | df-ov | ⊢ ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 𝑆 ‘ ( 𝑘 + 1 ) ) , ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) 〉 ) | |
| 236 | 234 235 | eqtr4di | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝑆 ‘ ( 𝑘 + 1 ) ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ ( 𝑘 + 1 ) ) ) ) ) |
| 237 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑆 ‘ 𝑛 ) = ( 𝑆 ‘ 𝑘 ) ) | |
| 238 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑘 ) ) | |
| 239 | 238 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 3 / ( 2 ↑ 𝑛 ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 240 | 237 239 | opeq12d | ⊢ ( 𝑛 = 𝑘 → 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 = 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) |
| 241 | opex | ⊢ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ∈ V | |
| 242 | 240 11 241 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( 𝑀 ‘ 𝑘 ) = 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) |
| 243 | 242 | fveq2d | ⊢ ( 𝑘 ∈ ℕ → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) ) |
| 244 | df-ov | ⊢ ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ 𝑘 ) ) ) = ( ( ball ‘ 𝐷 ) ‘ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) | |
| 245 | 243 244 | eqtr4di | ⊢ ( 𝑘 ∈ ℕ → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ 𝑘 ) ) ) ) |
| 246 | 245 | adantl | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) = ( ( 𝑆 ‘ 𝑘 ) ( ball ‘ 𝐷 ) ( 3 / ( 2 ↑ 𝑘 ) ) ) ) |
| 247 | 224 236 246 | 3sstr4d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ ( 𝑘 + 1 ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) |
| 248 | 247 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ ( 𝑘 + 1 ) ) ) ⊆ ( ( ball ‘ 𝐷 ) ‘ ( 𝑀 ‘ 𝑘 ) ) ) |