This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for heibor . Since the sizes of the balls decrease exponentially, the sequence converges to zero. (Contributed by Jeff Madsen, 23-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| heibor.3 | ⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | ||
| heibor.4 | ⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } | ||
| heibor.5 | ⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | ||
| heibor.6 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | ||
| heibor.7 | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) | ||
| heibor.8 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) | ||
| heibor.9 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) | ||
| heibor.10 | ⊢ ( 𝜑 → 𝐶 𝐺 0 ) | ||
| heibor.11 | ⊢ 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) | ||
| heibor.12 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) | ||
| Assertion | heiborlem7 | ⊢ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < 𝑟 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | heibor.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | heibor.3 | ⊢ 𝐾 = { 𝑢 ∣ ¬ ∃ 𝑣 ∈ ( 𝒫 𝑈 ∩ Fin ) 𝑢 ⊆ ∪ 𝑣 } | |
| 3 | heibor.4 | ⊢ 𝐺 = { 〈 𝑦 , 𝑛 〉 ∣ ( 𝑛 ∈ ℕ0 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ∧ ( 𝑦 𝐵 𝑛 ) ∈ 𝐾 ) } | |
| 4 | heibor.5 | ⊢ 𝐵 = ( 𝑧 ∈ 𝑋 , 𝑚 ∈ ℕ0 ↦ ( 𝑧 ( ball ‘ 𝐷 ) ( 1 / ( 2 ↑ 𝑚 ) ) ) ) | |
| 5 | heibor.6 | ⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) | |
| 6 | heibor.7 | ⊢ ( 𝜑 → 𝐹 : ℕ0 ⟶ ( 𝒫 𝑋 ∩ Fin ) ) | |
| 7 | heibor.8 | ⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ0 𝑋 = ∪ 𝑦 ∈ ( 𝐹 ‘ 𝑛 ) ( 𝑦 𝐵 𝑛 ) ) | |
| 8 | heibor.9 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐺 ( ( 𝑇 ‘ 𝑥 ) 𝐺 ( ( 2nd ‘ 𝑥 ) + 1 ) ∧ ( ( 𝐵 ‘ 𝑥 ) ∩ ( ( 𝑇 ‘ 𝑥 ) 𝐵 ( ( 2nd ‘ 𝑥 ) + 1 ) ) ) ∈ 𝐾 ) ) | |
| 9 | heibor.10 | ⊢ ( 𝜑 → 𝐶 𝐺 0 ) | |
| 10 | heibor.11 | ⊢ 𝑆 = seq 0 ( 𝑇 , ( 𝑚 ∈ ℕ0 ↦ if ( 𝑚 = 0 , 𝐶 , ( 𝑚 − 1 ) ) ) ) | |
| 11 | heibor.12 | ⊢ 𝑀 = ( 𝑛 ∈ ℕ ↦ 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 ) | |
| 12 | 3re | ⊢ 3 ∈ ℝ | |
| 13 | 3pos | ⊢ 0 < 3 | |
| 14 | 12 13 | elrpii | ⊢ 3 ∈ ℝ+ |
| 15 | rpdivcl | ⊢ ( ( 𝑟 ∈ ℝ+ ∧ 3 ∈ ℝ+ ) → ( 𝑟 / 3 ) ∈ ℝ+ ) | |
| 16 | 14 15 | mpan2 | ⊢ ( 𝑟 ∈ ℝ+ → ( 𝑟 / 3 ) ∈ ℝ+ ) |
| 17 | 2re | ⊢ 2 ∈ ℝ | |
| 18 | 1lt2 | ⊢ 1 < 2 | |
| 19 | expnlbnd | ⊢ ( ( ( 𝑟 / 3 ) ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2 ) → ∃ 𝑘 ∈ ℕ ( 1 / ( 2 ↑ 𝑘 ) ) < ( 𝑟 / 3 ) ) | |
| 20 | 17 18 19 | mp3an23 | ⊢ ( ( 𝑟 / 3 ) ∈ ℝ+ → ∃ 𝑘 ∈ ℕ ( 1 / ( 2 ↑ 𝑘 ) ) < ( 𝑟 / 3 ) ) |
| 21 | 16 20 | syl | ⊢ ( 𝑟 ∈ ℝ+ → ∃ 𝑘 ∈ ℕ ( 1 / ( 2 ↑ 𝑘 ) ) < ( 𝑟 / 3 ) ) |
| 22 | 2nn | ⊢ 2 ∈ ℕ | |
| 23 | nnnn0 | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℕ0 ) | |
| 24 | nnexpcl | ⊢ ( ( 2 ∈ ℕ ∧ 𝑘 ∈ ℕ0 ) → ( 2 ↑ 𝑘 ) ∈ ℕ ) | |
| 25 | 22 23 24 | sylancr | ⊢ ( 𝑘 ∈ ℕ → ( 2 ↑ 𝑘 ) ∈ ℕ ) |
| 26 | 25 | nnrpd | ⊢ ( 𝑘 ∈ ℕ → ( 2 ↑ 𝑘 ) ∈ ℝ+ ) |
| 27 | rpcn | ⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( 2 ↑ 𝑘 ) ∈ ℂ ) | |
| 28 | rpne0 | ⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( 2 ↑ 𝑘 ) ≠ 0 ) | |
| 29 | 3cn | ⊢ 3 ∈ ℂ | |
| 30 | divrec | ⊢ ( ( 3 ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ≠ 0 ) → ( 3 / ( 2 ↑ 𝑘 ) ) = ( 3 · ( 1 / ( 2 ↑ 𝑘 ) ) ) ) | |
| 31 | 29 30 | mp3an1 | ⊢ ( ( ( 2 ↑ 𝑘 ) ∈ ℂ ∧ ( 2 ↑ 𝑘 ) ≠ 0 ) → ( 3 / ( 2 ↑ 𝑘 ) ) = ( 3 · ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 32 | 27 28 31 | syl2anc | ⊢ ( ( 2 ↑ 𝑘 ) ∈ ℝ+ → ( 3 / ( 2 ↑ 𝑘 ) ) = ( 3 · ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 33 | 26 32 | syl | ⊢ ( 𝑘 ∈ ℕ → ( 3 / ( 2 ↑ 𝑘 ) ) = ( 3 · ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 34 | 33 | adantl | ⊢ ( ( 𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) → ( 3 / ( 2 ↑ 𝑘 ) ) = ( 3 · ( 1 / ( 2 ↑ 𝑘 ) ) ) ) |
| 35 | 34 | breq1d | ⊢ ( ( 𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) → ( ( 3 / ( 2 ↑ 𝑘 ) ) < 𝑟 ↔ ( 3 · ( 1 / ( 2 ↑ 𝑘 ) ) ) < 𝑟 ) ) |
| 36 | 25 | nnrecred | ⊢ ( 𝑘 ∈ ℕ → ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ ) |
| 37 | rpre | ⊢ ( 𝑟 ∈ ℝ+ → 𝑟 ∈ ℝ ) | |
| 38 | 12 13 | pm3.2i | ⊢ ( 3 ∈ ℝ ∧ 0 < 3 ) |
| 39 | ltmuldiv2 | ⊢ ( ( ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ ( 3 ∈ ℝ ∧ 0 < 3 ) ) → ( ( 3 · ( 1 / ( 2 ↑ 𝑘 ) ) ) < 𝑟 ↔ ( 1 / ( 2 ↑ 𝑘 ) ) < ( 𝑟 / 3 ) ) ) | |
| 40 | 38 39 | mp3an3 | ⊢ ( ( ( 1 / ( 2 ↑ 𝑘 ) ) ∈ ℝ ∧ 𝑟 ∈ ℝ ) → ( ( 3 · ( 1 / ( 2 ↑ 𝑘 ) ) ) < 𝑟 ↔ ( 1 / ( 2 ↑ 𝑘 ) ) < ( 𝑟 / 3 ) ) ) |
| 41 | 36 37 40 | syl2anr | ⊢ ( ( 𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) → ( ( 3 · ( 1 / ( 2 ↑ 𝑘 ) ) ) < 𝑟 ↔ ( 1 / ( 2 ↑ 𝑘 ) ) < ( 𝑟 / 3 ) ) ) |
| 42 | 35 41 | bitrd | ⊢ ( ( 𝑟 ∈ ℝ+ ∧ 𝑘 ∈ ℕ ) → ( ( 3 / ( 2 ↑ 𝑘 ) ) < 𝑟 ↔ ( 1 / ( 2 ↑ 𝑘 ) ) < ( 𝑟 / 3 ) ) ) |
| 43 | 42 | rexbidva | ⊢ ( 𝑟 ∈ ℝ+ → ( ∃ 𝑘 ∈ ℕ ( 3 / ( 2 ↑ 𝑘 ) ) < 𝑟 ↔ ∃ 𝑘 ∈ ℕ ( 1 / ( 2 ↑ 𝑘 ) ) < ( 𝑟 / 3 ) ) ) |
| 44 | 21 43 | mpbird | ⊢ ( 𝑟 ∈ ℝ+ → ∃ 𝑘 ∈ ℕ ( 3 / ( 2 ↑ 𝑘 ) ) < 𝑟 ) |
| 45 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝑆 ‘ 𝑛 ) = ( 𝑆 ‘ 𝑘 ) ) | |
| 46 | oveq2 | ⊢ ( 𝑛 = 𝑘 → ( 2 ↑ 𝑛 ) = ( 2 ↑ 𝑘 ) ) | |
| 47 | 46 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 3 / ( 2 ↑ 𝑛 ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 48 | 45 47 | opeq12d | ⊢ ( 𝑛 = 𝑘 → 〈 ( 𝑆 ‘ 𝑛 ) , ( 3 / ( 2 ↑ 𝑛 ) ) 〉 = 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) |
| 49 | opex | ⊢ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ∈ V | |
| 50 | 48 11 49 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( 𝑀 ‘ 𝑘 ) = 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) |
| 51 | 50 | fveq2d | ⊢ ( 𝑘 ∈ ℕ → ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) = ( 2nd ‘ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) ) |
| 52 | fvex | ⊢ ( 𝑆 ‘ 𝑘 ) ∈ V | |
| 53 | ovex | ⊢ ( 3 / ( 2 ↑ 𝑘 ) ) ∈ V | |
| 54 | 52 53 | op2nd | ⊢ ( 2nd ‘ 〈 ( 𝑆 ‘ 𝑘 ) , ( 3 / ( 2 ↑ 𝑘 ) ) 〉 ) = ( 3 / ( 2 ↑ 𝑘 ) ) |
| 55 | 51 54 | eqtrdi | ⊢ ( 𝑘 ∈ ℕ → ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) = ( 3 / ( 2 ↑ 𝑘 ) ) ) |
| 56 | 55 | breq1d | ⊢ ( 𝑘 ∈ ℕ → ( ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < 𝑟 ↔ ( 3 / ( 2 ↑ 𝑘 ) ) < 𝑟 ) ) |
| 57 | 56 | rexbiia | ⊢ ( ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < 𝑟 ↔ ∃ 𝑘 ∈ ℕ ( 3 / ( 2 ↑ 𝑘 ) ) < 𝑟 ) |
| 58 | 44 57 | sylibr | ⊢ ( 𝑟 ∈ ℝ+ → ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < 𝑟 ) |
| 59 | 58 | rgen | ⊢ ∀ 𝑟 ∈ ℝ+ ∃ 𝑘 ∈ ℕ ( 2nd ‘ ( 𝑀 ‘ 𝑘 ) ) < 𝑟 |