This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two concentric balls have different radii, the closure of the smaller one is contained in the larger one. (Contributed by Mario Carneiro, 5-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | blsscls.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | blsscls | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ* ∧ 𝑅 < 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | blsscls.2 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | eqid | ⊢ { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) ≤ 𝑅 } = { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) ≤ 𝑅 } | |
| 3 | 1 2 | blcls | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ∧ 𝑅 ∈ ℝ* ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ⊆ { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) ≤ 𝑅 } ) |
| 4 | 3 | 3expa | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ 𝑅 ∈ ℝ* ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ⊆ { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) ≤ 𝑅 } ) |
| 5 | 4 | 3ad2antr1 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ* ∧ 𝑅 < 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ⊆ { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) ≤ 𝑅 } ) |
| 6 | 1 2 | blsscls2 | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ* ∧ 𝑅 < 𝑆 ) ) → { 𝑥 ∈ 𝑋 ∣ ( 𝑃 𝐷 𝑥 ) ≤ 𝑅 } ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) ) |
| 7 | 5 6 | sstrd | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑃 ∈ 𝑋 ) ∧ ( 𝑅 ∈ ℝ* ∧ 𝑆 ∈ ℝ* ∧ 𝑅 < 𝑆 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( 𝑃 ( ball ‘ 𝐷 ) 𝑅 ) ) ⊆ ( 𝑃 ( ball ‘ 𝐷 ) 𝑆 ) ) |