This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A complete metric space is a metric space. (Contributed by NM, 18-Dec-2006) (Revised by Mario Carneiro, 29-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | iscmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 ) fLim 𝑓 ) ≠ ∅ ) ) |
| 3 | 2 | simplbi | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |