This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hashf1 . (Contributed by Mario Carneiro, 17-Apr-2015) (Proof shortened by AV, 14-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashf1lem2.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| hashf1lem2.2 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | ||
| hashf1lem2.3 | ⊢ ( 𝜑 → ¬ 𝑧 ∈ 𝐴 ) | ||
| hashf1lem2.4 | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) | ||
| hashf1lem1.5 | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1→ 𝐵 ) | ||
| Assertion | hashf1lem1 | ⊢ ( 𝜑 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ≈ ( 𝐵 ∖ ran 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashf1lem2.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | hashf1lem2.2 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | |
| 3 | hashf1lem2.3 | ⊢ ( 𝜑 → ¬ 𝑧 ∈ 𝐴 ) | |
| 4 | hashf1lem2.4 | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) | |
| 5 | hashf1lem1.5 | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1→ 𝐵 ) | |
| 6 | f1setex | ⊢ ( 𝐵 ∈ Fin → { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ∈ V ) | |
| 7 | 2 6 | syl | ⊢ ( 𝜑 → { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ∈ V ) |
| 8 | abanssr | ⊢ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } | |
| 9 | 8 | a1i | ⊢ ( 𝜑 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) |
| 10 | 7 9 | ssexd | ⊢ ( 𝜑 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ V ) |
| 11 | 2 | difexd | ⊢ ( 𝜑 → ( 𝐵 ∖ ran 𝐹 ) ∈ V ) |
| 12 | vex | ⊢ 𝑔 ∈ V | |
| 13 | reseq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ↾ 𝐴 ) = ( 𝑔 ↾ 𝐴 ) ) | |
| 14 | 13 | eqeq1d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ↔ ( 𝑔 ↾ 𝐴 ) = 𝐹 ) ) |
| 15 | f1eq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ↔ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) | |
| 16 | 14 15 | anbi12d | ⊢ ( 𝑓 = 𝑔 → ( ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 17 | 12 16 | elab | ⊢ ( 𝑔 ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ↔ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) |
| 18 | f1f | ⊢ ( 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → 𝑔 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) | |
| 19 | 18 | ad2antll | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝑔 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
| 20 | ssun2 | ⊢ { 𝑧 } ⊆ ( 𝐴 ∪ { 𝑧 } ) | |
| 21 | vex | ⊢ 𝑧 ∈ V | |
| 22 | 21 | snss | ⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) ↔ { 𝑧 } ⊆ ( 𝐴 ∪ { 𝑧 } ) ) |
| 23 | 20 22 | mpbir | ⊢ 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) |
| 24 | ffvelcdm | ⊢ ( ( 𝑔 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ∧ 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) ) → ( 𝑔 ‘ 𝑧 ) ∈ 𝐵 ) | |
| 25 | 19 23 24 | sylancl | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑔 ‘ 𝑧 ) ∈ 𝐵 ) |
| 26 | 3 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ¬ 𝑧 ∈ 𝐴 ) |
| 27 | df-ima | ⊢ ( 𝑔 “ 𝐴 ) = ran ( 𝑔 ↾ 𝐴 ) | |
| 28 | simprl | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑔 ↾ 𝐴 ) = 𝐹 ) | |
| 29 | 28 | rneqd | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ran ( 𝑔 ↾ 𝐴 ) = ran 𝐹 ) |
| 30 | 27 29 | eqtrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑔 “ 𝐴 ) = ran 𝐹 ) |
| 31 | 30 | eleq2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( ( 𝑔 ‘ 𝑧 ) ∈ ( 𝑔 “ 𝐴 ) ↔ ( 𝑔 ‘ 𝑧 ) ∈ ran 𝐹 ) ) |
| 32 | simprr | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) | |
| 33 | 23 | a1i | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) ) |
| 34 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) | |
| 35 | 34 | a1i | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) ) |
| 36 | f1elima | ⊢ ( ( 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ∧ 𝑧 ∈ ( 𝐴 ∪ { 𝑧 } ) ∧ 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) ) → ( ( 𝑔 ‘ 𝑧 ) ∈ ( 𝑔 “ 𝐴 ) ↔ 𝑧 ∈ 𝐴 ) ) | |
| 37 | 32 33 35 36 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( ( 𝑔 ‘ 𝑧 ) ∈ ( 𝑔 “ 𝐴 ) ↔ 𝑧 ∈ 𝐴 ) ) |
| 38 | 31 37 | bitr3d | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( ( 𝑔 ‘ 𝑧 ) ∈ ran 𝐹 ↔ 𝑧 ∈ 𝐴 ) ) |
| 39 | 26 38 | mtbird | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ¬ ( 𝑔 ‘ 𝑧 ) ∈ ran 𝐹 ) |
| 40 | 25 39 | eldifd | ⊢ ( ( 𝜑 ∧ ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑔 ‘ 𝑧 ) ∈ ( 𝐵 ∖ ran 𝐹 ) ) |
| 41 | 40 | ex | ⊢ ( 𝜑 → ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) → ( 𝑔 ‘ 𝑧 ) ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) |
| 42 | 17 41 | biimtrid | ⊢ ( 𝜑 → ( 𝑔 ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } → ( 𝑔 ‘ 𝑧 ) ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) |
| 43 | f1f | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 44 | 5 43 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 45 | 44 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 46 | vex | ⊢ 𝑥 ∈ V | |
| 47 | 21 46 | f1osn | ⊢ { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } –1-1-onto→ { 𝑥 } |
| 48 | f1of | ⊢ ( { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } –1-1-onto→ { 𝑥 } → { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ { 𝑥 } ) | |
| 49 | 47 48 | ax-mp | ⊢ { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ { 𝑥 } |
| 50 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) → 𝑥 ∈ 𝐵 ) | |
| 51 | 50 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → 𝑥 ∈ 𝐵 ) |
| 52 | 51 | snssd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → { 𝑥 } ⊆ 𝐵 ) |
| 53 | fss | ⊢ ( ( { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ { 𝑥 } ∧ { 𝑥 } ⊆ 𝐵 ) → { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ 𝐵 ) | |
| 54 | 49 52 53 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ 𝐵 ) |
| 55 | res0 | ⊢ ( 𝐹 ↾ ∅ ) = ∅ | |
| 56 | res0 | ⊢ ( { 〈 𝑧 , 𝑥 〉 } ↾ ∅ ) = ∅ | |
| 57 | 55 56 | eqtr4i | ⊢ ( 𝐹 ↾ ∅ ) = ( { 〈 𝑧 , 𝑥 〉 } ↾ ∅ ) |
| 58 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝐴 ) | |
| 59 | 3 58 | sylibr | ⊢ ( 𝜑 → ( 𝐴 ∩ { 𝑧 } ) = ∅ ) |
| 60 | 59 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐴 ∩ { 𝑧 } ) = ∅ ) |
| 61 | 60 | reseq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ { 𝑧 } ) ) = ( 𝐹 ↾ ∅ ) ) |
| 62 | 60 | reseq2d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( { 〈 𝑧 , 𝑥 〉 } ↾ ( 𝐴 ∩ { 𝑧 } ) ) = ( { 〈 𝑧 , 𝑥 〉 } ↾ ∅ ) ) |
| 63 | 57 61 62 | 3eqtr4a | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ↾ ( 𝐴 ∩ { 𝑧 } ) ) = ( { 〈 𝑧 , 𝑥 〉 } ↾ ( 𝐴 ∩ { 𝑧 } ) ) ) |
| 64 | fresaunres1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } ⟶ 𝐵 ∧ ( 𝐹 ↾ ( 𝐴 ∩ { 𝑧 } ) ) = ( { 〈 𝑧 , 𝑥 〉 } ↾ ( 𝐴 ∩ { 𝑧 } ) ) ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ) | |
| 65 | 45 54 63 64 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ) |
| 66 | f1f1orn | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) | |
| 67 | 5 66 | syl | ⊢ ( 𝜑 → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
| 68 | 67 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ) |
| 69 | 47 | a1i | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } –1-1-onto→ { 𝑥 } ) |
| 70 | eldifn | ⊢ ( 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) → ¬ 𝑥 ∈ ran 𝐹 ) | |
| 71 | 70 | adantl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ¬ 𝑥 ∈ ran 𝐹 ) |
| 72 | disjsn | ⊢ ( ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ↔ ¬ 𝑥 ∈ ran 𝐹 ) | |
| 73 | 71 72 | sylibr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ) |
| 74 | f1oun | ⊢ ( ( ( 𝐹 : 𝐴 –1-1-onto→ ran 𝐹 ∧ { 〈 𝑧 , 𝑥 〉 } : { 𝑧 } –1-1-onto→ { 𝑥 } ) ∧ ( ( 𝐴 ∩ { 𝑧 } ) = ∅ ∧ ( ran 𝐹 ∩ { 𝑥 } ) = ∅ ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1-onto→ ( ran 𝐹 ∪ { 𝑥 } ) ) | |
| 75 | 68 69 60 73 74 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1-onto→ ( ran 𝐹 ∪ { 𝑥 } ) ) |
| 76 | f1of1 | ⊢ ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1-onto→ ( ran 𝐹 ∪ { 𝑥 } ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ ( ran 𝐹 ∪ { 𝑥 } ) ) | |
| 77 | 75 76 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ ( ran 𝐹 ∪ { 𝑥 } ) ) |
| 78 | 45 | frnd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ran 𝐹 ⊆ 𝐵 ) |
| 79 | 78 52 | unssd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( ran 𝐹 ∪ { 𝑥 } ) ⊆ 𝐵 ) |
| 80 | f1ss | ⊢ ( ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ ( ran 𝐹 ∪ { 𝑥 } ) ∧ ( ran 𝐹 ∪ { 𝑥 } ) ⊆ 𝐵 ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) | |
| 81 | 77 79 80 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) |
| 82 | 44 1 | fexd | ⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 83 | 82 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → 𝐹 ∈ V ) |
| 84 | snex | ⊢ { 〈 𝑧 , 𝑥 〉 } ∈ V | |
| 85 | unexg | ⊢ ( ( 𝐹 ∈ V ∧ { 〈 𝑧 , 𝑥 〉 } ∈ V ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ V ) | |
| 86 | 83 84 85 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ V ) |
| 87 | reseq1 | ⊢ ( 𝑓 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) → ( 𝑓 ↾ 𝐴 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) ) | |
| 88 | 87 | eqeq1d | ⊢ ( 𝑓 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) → ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ↔ ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ) ) |
| 89 | f1eq1 | ⊢ ( 𝑓 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) → ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ↔ ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) | |
| 90 | 88 89 | anbi12d | ⊢ ( 𝑓 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) → ( ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ∧ ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 91 | 90 | elabg | ⊢ ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ V → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ↔ ( ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ∧ ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 92 | 86 91 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ↔ ( ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↾ 𝐴 ) = 𝐹 ∧ ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 93 | 65 81 92 | mpbir2and | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) |
| 94 | 93 | ex | ⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) |
| 95 | 17 | anbi1i | ⊢ ( ( 𝑔 ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ↔ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) |
| 96 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) | |
| 97 | f1fn | ⊢ ( 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → 𝑔 Fn ( 𝐴 ∪ { 𝑧 } ) ) | |
| 98 | 96 97 | syl | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → 𝑔 Fn ( 𝐴 ∪ { 𝑧 } ) ) |
| 99 | 75 | adantrl | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1-onto→ ( ran 𝐹 ∪ { 𝑥 } ) ) |
| 100 | f1ofn | ⊢ ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) : ( 𝐴 ∪ { 𝑧 } ) –1-1-onto→ ( ran 𝐹 ∪ { 𝑥 } ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) Fn ( 𝐴 ∪ { 𝑧 } ) ) | |
| 101 | 99 100 | syl | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) Fn ( 𝐴 ∪ { 𝑧 } ) ) |
| 102 | eqfnfv | ⊢ ( ( 𝑔 Fn ( 𝐴 ∪ { 𝑧 } ) ∧ ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) Fn ( 𝐴 ∪ { 𝑧 } ) ) → ( 𝑔 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑧 } ) ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) ) | |
| 103 | 98 101 102 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( 𝑔 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑧 } ) ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) ) |
| 104 | fvres | ⊢ ( 𝑦 ∈ 𝐴 → ( ( 𝑔 ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝑔 ‘ 𝑦 ) ) | |
| 105 | 104 | eqcomd | ⊢ ( 𝑦 ∈ 𝐴 → ( 𝑔 ‘ 𝑦 ) = ( ( 𝑔 ↾ 𝐴 ) ‘ 𝑦 ) ) |
| 106 | simprll | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( 𝑔 ↾ 𝐴 ) = 𝐹 ) | |
| 107 | 106 | fveq1d | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ( 𝑔 ↾ 𝐴 ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 108 | 105 107 | sylan9eqr | ⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 109 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) |
| 110 | f1fn | ⊢ ( 𝐹 : 𝐴 –1-1→ 𝐵 → 𝐹 Fn 𝐴 ) | |
| 111 | 109 110 | syl | ⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝐹 Fn 𝐴 ) |
| 112 | 21 46 | fnsn | ⊢ { 〈 𝑧 , 𝑥 〉 } Fn { 𝑧 } |
| 113 | 112 | a1i | ⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → { 〈 𝑧 , 𝑥 〉 } Fn { 𝑧 } ) |
| 114 | 59 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝐴 ∩ { 𝑧 } ) = ∅ ) |
| 115 | simpr | ⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ 𝐴 ) | |
| 116 | 111 113 114 115 | fvun1d | ⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 117 | 108 116 | eqtr4d | ⊢ ( ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) ∧ 𝑦 ∈ 𝐴 ) → ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) |
| 118 | 117 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) |
| 119 | 118 | biantrurd | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) ) ) |
| 120 | ralunb | ⊢ ( ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑧 } ) ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ ( ∀ 𝑦 ∈ 𝐴 ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ∧ ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) ) | |
| 121 | 119 120 | bitr4di | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ ∀ 𝑦 ∈ ( 𝐴 ∪ { 𝑧 } ) ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ) ) |
| 122 | 44 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
| 123 | 122 | eleq2d | ⊢ ( 𝜑 → ( 𝑧 ∈ dom 𝐹 ↔ 𝑧 ∈ 𝐴 ) ) |
| 124 | 3 123 | mtbird | ⊢ ( 𝜑 → ¬ 𝑧 ∈ dom 𝐹 ) |
| 125 | 124 | adantr | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ¬ 𝑧 ∈ dom 𝐹 ) |
| 126 | fsnunfv | ⊢ ( ( 𝑧 ∈ V ∧ 𝑥 ∈ V ∧ ¬ 𝑧 ∈ dom 𝐹 ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) = 𝑥 ) | |
| 127 | 21 46 125 126 | mp3an12i | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) = 𝑥 ) |
| 128 | 127 | eqeq2d | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ( 𝑔 ‘ 𝑧 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) ↔ ( 𝑔 ‘ 𝑧 ) = 𝑥 ) ) |
| 129 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑔 ‘ 𝑦 ) = ( 𝑔 ‘ 𝑧 ) ) | |
| 130 | fveq2 | ⊢ ( 𝑦 = 𝑧 → ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) ) | |
| 131 | 129 130 | eqeq12d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝑧 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) ) ) |
| 132 | 21 131 | ralsn | ⊢ ( ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ ( 𝑔 ‘ 𝑧 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑧 ) ) |
| 133 | eqcom | ⊢ ( 𝑥 = ( 𝑔 ‘ 𝑧 ) ↔ ( 𝑔 ‘ 𝑧 ) = 𝑥 ) | |
| 134 | 128 132 133 | 3bitr4g | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( ∀ 𝑦 ∈ { 𝑧 } ( 𝑔 ‘ 𝑦 ) = ( ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ‘ 𝑦 ) ↔ 𝑥 = ( 𝑔 ‘ 𝑧 ) ) ) |
| 135 | 103 121 134 | 3bitr2d | ⊢ ( ( 𝜑 ∧ ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) ) → ( 𝑔 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↔ 𝑥 = ( 𝑔 ‘ 𝑧 ) ) ) |
| 136 | 135 | ex | ⊢ ( 𝜑 → ( ( ( ( 𝑔 ↾ 𝐴 ) = 𝐹 ∧ 𝑔 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝑔 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↔ 𝑥 = ( 𝑔 ‘ 𝑧 ) ) ) ) |
| 137 | 95 136 | biimtrid | ⊢ ( 𝜑 → ( ( 𝑔 ∈ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∧ 𝑥 ∈ ( 𝐵 ∖ ran 𝐹 ) ) → ( 𝑔 = ( 𝐹 ∪ { 〈 𝑧 , 𝑥 〉 } ) ↔ 𝑥 = ( 𝑔 ‘ 𝑧 ) ) ) ) |
| 138 | 10 11 42 94 137 | en3d | ⊢ ( 𝜑 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝐹 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ≈ ( 𝐵 ∖ ran 𝐹 ) ) |