This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The permutation number | A | ! x. ( | B | _C | A | ) = | B | ! / ( | B | - | A | ) ! counts the number of injections from A to B . (Contributed by Mario Carneiro, 21-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashf1 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq2 | ⊢ ( 𝑥 = ∅ → ( 𝑓 : 𝑥 –1-1→ 𝐵 ↔ 𝑓 : ∅ –1-1→ 𝐵 ) ) | |
| 2 | f1fn | ⊢ ( 𝑓 : ∅ –1-1→ 𝐵 → 𝑓 Fn ∅ ) | |
| 3 | fn0 | ⊢ ( 𝑓 Fn ∅ ↔ 𝑓 = ∅ ) | |
| 4 | 2 3 | sylib | ⊢ ( 𝑓 : ∅ –1-1→ 𝐵 → 𝑓 = ∅ ) |
| 5 | f10 | ⊢ ∅ : ∅ –1-1→ 𝐵 | |
| 6 | f1eq1 | ⊢ ( 𝑓 = ∅ → ( 𝑓 : ∅ –1-1→ 𝐵 ↔ ∅ : ∅ –1-1→ 𝐵 ) ) | |
| 7 | 5 6 | mpbiri | ⊢ ( 𝑓 = ∅ → 𝑓 : ∅ –1-1→ 𝐵 ) |
| 8 | 4 7 | impbii | ⊢ ( 𝑓 : ∅ –1-1→ 𝐵 ↔ 𝑓 = ∅ ) |
| 9 | velsn | ⊢ ( 𝑓 ∈ { ∅ } ↔ 𝑓 = ∅ ) | |
| 10 | 8 9 | bitr4i | ⊢ ( 𝑓 : ∅ –1-1→ 𝐵 ↔ 𝑓 ∈ { ∅ } ) |
| 11 | 1 10 | bitrdi | ⊢ ( 𝑥 = ∅ → ( 𝑓 : 𝑥 –1-1→ 𝐵 ↔ 𝑓 ∈ { ∅ } ) ) |
| 12 | 11 | eqabcdv | ⊢ ( 𝑥 = ∅ → { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } = { ∅ } ) |
| 13 | 12 | fveq2d | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ♯ ‘ { ∅ } ) ) |
| 14 | 0ex | ⊢ ∅ ∈ V | |
| 15 | hashsng | ⊢ ( ∅ ∈ V → ( ♯ ‘ { ∅ } ) = 1 ) | |
| 16 | 14 15 | ax-mp | ⊢ ( ♯ ‘ { ∅ } ) = 1 |
| 17 | 13 16 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = 1 ) |
| 18 | fveq2 | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) | |
| 19 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 20 | 18 19 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 ) |
| 21 | 20 | fveq2d | ⊢ ( 𝑥 = ∅ → ( ! ‘ ( ♯ ‘ 𝑥 ) ) = ( ! ‘ 0 ) ) |
| 22 | fac0 | ⊢ ( ! ‘ 0 ) = 1 | |
| 23 | 21 22 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( ! ‘ ( ♯ ‘ 𝑥 ) ) = 1 ) |
| 24 | 20 | oveq2d | ⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐵 ) C 0 ) ) |
| 25 | 23 24 | oveq12d | ⊢ ( 𝑥 = ∅ → ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) = ( 1 · ( ( ♯ ‘ 𝐵 ) C 0 ) ) ) |
| 26 | 17 25 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ↔ 1 = ( 1 · ( ( ♯ ‘ 𝐵 ) C 0 ) ) ) ) |
| 27 | 26 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝐵 ∈ Fin → 1 = ( 1 · ( ( ♯ ‘ 𝐵 ) C 0 ) ) ) ) ) |
| 28 | f1eq2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑓 : 𝑥 –1-1→ 𝐵 ↔ 𝑓 : 𝑦 –1-1→ 𝐵 ) ) | |
| 29 | 28 | abbidv | ⊢ ( 𝑥 = 𝑦 → { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } = { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) |
| 30 | 29 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) ) |
| 31 | 2fveq3 | ⊢ ( 𝑥 = 𝑦 → ( ! ‘ ( ♯ ‘ 𝑥 ) ) = ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) | |
| 32 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) | |
| 33 | 32 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) |
| 34 | 31 33 | oveq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) |
| 35 | 30 34 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ↔ ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 36 | 35 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) ) ) |
| 37 | f1eq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑓 : 𝑥 –1-1→ 𝐵 ↔ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) | |
| 38 | 37 | abbidv | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } = { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) |
| 39 | 38 | fveq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) ) |
| 40 | 2fveq3 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ! ‘ ( ♯ ‘ 𝑥 ) ) = ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) | |
| 41 | fveq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) | |
| 42 | 41 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 43 | 40 42 | oveq12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
| 44 | 39 43 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ↔ ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 45 | 44 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) ) |
| 46 | f1eq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑓 : 𝑥 –1-1→ 𝐵 ↔ 𝑓 : 𝐴 –1-1→ 𝐵 ) ) | |
| 47 | 46 | abbidv | ⊢ ( 𝑥 = 𝐴 → { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
| 48 | 47 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) |
| 49 | 2fveq3 | ⊢ ( 𝑥 = 𝐴 → ( ! ‘ ( ♯ ‘ 𝑥 ) ) = ( ! ‘ ( ♯ ‘ 𝐴 ) ) ) | |
| 50 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐴 ) ) | |
| 51 | 50 | oveq2d | ⊢ ( 𝑥 = 𝐴 → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) = ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) |
| 52 | 49 51 | oveq12d | ⊢ ( 𝑥 = 𝐴 → ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) ) |
| 53 | 48 52 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ↔ ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) ) ) |
| 54 | 53 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑥 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑥 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) ) ) ) |
| 55 | hashcl | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 56 | bcn0 | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ( ♯ ‘ 𝐵 ) C 0 ) = 1 ) | |
| 57 | 55 56 | syl | ⊢ ( 𝐵 ∈ Fin → ( ( ♯ ‘ 𝐵 ) C 0 ) = 1 ) |
| 58 | 57 | oveq2d | ⊢ ( 𝐵 ∈ Fin → ( 1 · ( ( ♯ ‘ 𝐵 ) C 0 ) ) = ( 1 · 1 ) ) |
| 59 | 1t1e1 | ⊢ ( 1 · 1 ) = 1 | |
| 60 | 58 59 | eqtr2di | ⊢ ( 𝐵 ∈ Fin → 1 = ( 1 · ( ( ♯ ‘ 𝐵 ) C 0 ) ) ) |
| 61 | abn0 | ⊢ ( { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ≠ ∅ ↔ ∃ 𝑓 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 ) | |
| 62 | f1domg | ⊢ ( 𝐵 ∈ Fin → ( 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 → ( 𝑦 ∪ { 𝑧 } ) ≼ 𝐵 ) ) | |
| 63 | 62 | adantr | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 → ( 𝑦 ∪ { 𝑧 } ) ≼ 𝐵 ) ) |
| 64 | hashunsng | ⊢ ( 𝑧 ∈ V → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) | |
| 65 | 64 | elv | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 66 | 65 | adantl | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 67 | 66 | breq1d | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ≤ ( ♯ ‘ 𝐵 ) ↔ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) ) |
| 68 | simprl | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ∈ Fin ) | |
| 69 | snfi | ⊢ { 𝑧 } ∈ Fin | |
| 70 | unfi | ⊢ ( ( 𝑦 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) | |
| 71 | 68 69 70 | sylancl | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ) |
| 72 | simpl | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝐵 ∈ Fin ) | |
| 73 | hashdom | ⊢ ( ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ≤ ( ♯ ‘ 𝐵 ) ↔ ( 𝑦 ∪ { 𝑧 } ) ≼ 𝐵 ) ) | |
| 74 | 71 72 73 | syl2anc | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ≤ ( ♯ ‘ 𝐵 ) ↔ ( 𝑦 ∪ { 𝑧 } ) ≼ 𝐵 ) ) |
| 75 | hashcl | ⊢ ( 𝑦 ∈ Fin → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) | |
| 76 | 75 | ad2antrl | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
| 77 | nn0p1nn | ⊢ ( ( ♯ ‘ 𝑦 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ ) | |
| 78 | 76 77 | syl | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ ) |
| 79 | 78 | nnred | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℝ ) |
| 80 | 55 | adantr | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 81 | 80 | nn0red | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℝ ) |
| 82 | 79 81 | lenltd | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ↔ ¬ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 83 | 67 74 82 | 3bitr3d | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝑦 ∪ { 𝑧 } ) ≼ 𝐵 ↔ ¬ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 84 | 63 83 | sylibd | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 → ¬ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 85 | 84 | exlimdv | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ∃ 𝑓 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 → ¬ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 86 | 61 85 | biimtrid | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ≠ ∅ → ¬ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 87 | 86 | necon4ad | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) → { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } = ∅ ) ) |
| 88 | 87 | imp | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } = ∅ ) |
| 89 | 88 | fveq2d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ♯ ‘ ∅ ) ) |
| 90 | hashcl | ⊢ ( ( 𝑦 ∪ { 𝑧 } ) ∈ Fin → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) | |
| 91 | 71 90 | syl | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ ℕ0 ) |
| 92 | 91 | faccld | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ ℕ ) |
| 93 | 92 | nncnd | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ ℂ ) |
| 94 | 93 | adantr | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ ℂ ) |
| 95 | 94 | mul01d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · 0 ) = 0 ) |
| 96 | 19 89 95 | 3eqtr4a | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · 0 ) ) |
| 97 | 66 | adantr | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 98 | 97 | oveq2d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 99 | 80 | adantr | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 100 | 78 | adantr | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ ) |
| 101 | 100 | nnzd | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℤ ) |
| 102 | animorr | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ( ♯ ‘ 𝑦 ) + 1 ) < 0 ∨ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) | |
| 103 | bcval4 | ⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℤ ∧ ( ( ( ♯ ‘ 𝑦 ) + 1 ) < 0 ∨ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) → ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) = 0 ) | |
| 104 | 99 101 102 103 | syl3anc | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) = 0 ) |
| 105 | 98 104 | eqtrd | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = 0 ) |
| 106 | 105 | oveq2d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · 0 ) ) |
| 107 | 96 106 | eqtr4d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
| 108 | 107 | a1d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ♯ ‘ 𝐵 ) < ( ( ♯ ‘ 𝑦 ) + 1 ) ) → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 109 | oveq2 | ⊢ ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) ) | |
| 110 | 68 | adantr | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → 𝑦 ∈ Fin ) |
| 111 | 72 | adantr | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → 𝐵 ∈ Fin ) |
| 112 | simplrr | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ¬ 𝑧 ∈ 𝑦 ) | |
| 113 | simpr | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) | |
| 114 | 110 111 112 113 | hashf1lem2 | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) ) ) |
| 115 | 80 | adantr | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 116 | 115 | faccld | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ 𝐵 ) ) ∈ ℕ ) |
| 117 | 116 | nncnd | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ 𝐵 ) ) ∈ ℂ ) |
| 118 | 76 | adantr | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
| 119 | peano2nn0 | ⊢ ( ( ♯ ‘ 𝑦 ) ∈ ℕ0 → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ0 ) | |
| 120 | 118 119 | syl | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ0 ) |
| 121 | nn0sub2 | ⊢ ( ( ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ∈ ℕ0 ) | |
| 122 | 120 115 113 121 | syl3anc | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ∈ ℕ0 ) |
| 123 | 122 | faccld | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ∈ ℕ ) |
| 124 | 123 | nncnd | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ∈ ℂ ) |
| 125 | 123 | nnne0d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ≠ 0 ) |
| 126 | 117 124 125 | divcld | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ∈ ℂ ) |
| 127 | 120 | faccld | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ∈ ℕ ) |
| 128 | 127 | nncnd | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ∈ ℂ ) |
| 129 | 127 | nnne0d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ≠ 0 ) |
| 130 | 126 128 129 | divcan2d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
| 131 | 115 | nn0cnd | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 132 | 118 | nn0cnd | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ∈ ℂ ) |
| 133 | 131 132 | subcld | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℂ ) |
| 134 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 135 | npcan | ⊢ ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) + 1 ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) | |
| 136 | 133 134 135 | sylancl | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) + 1 ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) |
| 137 | 1cnd | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → 1 ∈ ℂ ) | |
| 138 | 131 132 137 | subsub4d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) = ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 139 | 138 122 | eqeltrd | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ∈ ℕ0 ) |
| 140 | nn0p1nn | ⊢ ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ∈ ℕ0 → ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) + 1 ) ∈ ℕ ) | |
| 141 | 139 140 | syl | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) + 1 ) ∈ ℕ ) |
| 142 | 136 141 | eqeltrrd | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℕ ) |
| 143 | 142 | nnne0d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ≠ 0 ) |
| 144 | 126 133 143 | divcan2d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
| 145 | 130 144 | eqtr4d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 146 | 66 | adantr | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 147 | 146 | fveq2d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 148 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 149 | 120 148 | eleqtrdi | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 150 | 115 | nn0zd | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝐵 ) ∈ ℤ ) |
| 151 | elfz5 | ⊢ ( ( ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ♯ ‘ 𝐵 ) ∈ ℤ ) → ( ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ↔ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) ) | |
| 152 | 149 150 151 | syl2anc | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ↔ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) ) |
| 153 | 113 152 | mpbird | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) |
| 154 | bcval2 | ⊢ ( ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) | |
| 155 | 153 154 | syl | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
| 156 | 146 | oveq2d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ♯ ‘ 𝐵 ) C ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 157 | 117 124 128 125 129 | divdiv1d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
| 158 | 155 156 157 | 3eqtr4d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) = ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) |
| 159 | 147 158 | oveq12d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ! ‘ ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) ) |
| 160 | 118 148 | eleqtrdi | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 161 | peano2fzr | ⊢ ( ( ( ♯ ‘ 𝑦 ) ∈ ( ℤ≥ ‘ 0 ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) → ( ♯ ‘ 𝑦 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) | |
| 162 | 160 153 161 | syl2anc | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) ) |
| 163 | bcval2 | ⊢ ( ( ♯ ‘ 𝑦 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) · ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) | |
| 164 | 162 163 | syl | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) · ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 165 | elfzle2 | ⊢ ( ( ♯ ‘ 𝑦 ) ∈ ( 0 ... ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ≤ ( ♯ ‘ 𝐵 ) ) | |
| 166 | 162 165 | syl | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ♯ ‘ 𝑦 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 167 | nn0sub2 | ⊢ ( ( ( ♯ ‘ 𝑦 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ∧ ( ♯ ‘ 𝑦 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℕ0 ) | |
| 168 | 118 115 166 167 | syl3anc | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℕ0 ) |
| 169 | 168 | faccld | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ∈ ℕ ) |
| 170 | 169 | nncnd | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ∈ ℂ ) |
| 171 | 118 | faccld | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ 𝑦 ) ) ∈ ℕ ) |
| 172 | 171 | nncnd | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ 𝑦 ) ) ∈ ℂ ) |
| 173 | 169 | nnne0d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ≠ 0 ) |
| 174 | 171 | nnne0d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ♯ ‘ 𝑦 ) ) ≠ 0 ) |
| 175 | 117 170 172 173 174 | divdiv1d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) / ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) · ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 176 | 164 175 | eqtr4d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) = ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) / ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) |
| 177 | 176 | oveq2d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) / ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 178 | facnn2 | ⊢ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ∈ ℕ → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) | |
| 179 | 142 178 | syl | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
| 180 | 138 | fveq2d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ) = ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) |
| 181 | 180 | oveq1d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) − 1 ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
| 182 | 179 181 | eqtrd | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
| 183 | 182 | oveq2d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 184 | 117 170 173 | divcld | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ∈ ℂ ) |
| 185 | 184 172 174 | divcan2d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) / ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 186 | 117 124 133 125 143 | divdiv1d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) = ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) · ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 187 | 183 185 186 | 3eqtr4d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) / ( ! ‘ ( ♯ ‘ 𝑦 ) ) ) ) = ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
| 188 | 177 187 | eqtrd | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) = ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) |
| 189 | 188 | oveq2d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ( ! ‘ ( ♯ ‘ 𝐵 ) ) / ( ! ‘ ( ( ♯ ‘ 𝐵 ) − ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) ) / ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 190 | 145 159 189 | 3eqtr4d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 191 | 114 190 | eqeq12d | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ↔ ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝑦 ) ) · ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) ) ) |
| 192 | 109 191 | imbitrrid | ⊢ ( ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ ( ( ♯ ‘ 𝑦 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 193 | 108 192 81 79 | ltlecasei | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) |
| 194 | 193 | expcom | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝐵 ∈ Fin → ( ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) ) |
| 195 | 194 | a2d | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝑦 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝑦 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝑦 ) ) ) ) → ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝑦 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) ) ) |
| 196 | 27 36 45 54 60 195 | findcard2s | ⊢ ( 𝐴 ∈ Fin → ( 𝐵 ∈ Fin → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) ) ) |
| 197 | 196 | imp | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) = ( ( ! ‘ ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝐵 ) C ( ♯ ‘ 𝐴 ) ) ) ) |