This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Mario Carneiro, 16-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fresaunres1 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ∪ 𝐺 ) ↾ 𝐴 ) = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom | ⊢ ( 𝐹 ∪ 𝐺 ) = ( 𝐺 ∪ 𝐹 ) | |
| 2 | 1 | reseq1i | ⊢ ( ( 𝐹 ∪ 𝐺 ) ↾ 𝐴 ) = ( ( 𝐺 ∪ 𝐹 ) ↾ 𝐴 ) |
| 3 | incom | ⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐵 ∩ 𝐴 ) | |
| 4 | 3 | reseq2i | ⊢ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐹 ↾ ( 𝐵 ∩ 𝐴 ) ) |
| 5 | 3 | reseq2i | ⊢ ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐵 ∩ 𝐴 ) ) |
| 6 | 4 5 | eqeq12i | ⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ↔ ( 𝐹 ↾ ( 𝐵 ∩ 𝐴 ) ) = ( 𝐺 ↾ ( 𝐵 ∩ 𝐴 ) ) ) |
| 7 | eqcom | ⊢ ( ( 𝐹 ↾ ( 𝐵 ∩ 𝐴 ) ) = ( 𝐺 ↾ ( 𝐵 ∩ 𝐴 ) ) ↔ ( 𝐺 ↾ ( 𝐵 ∩ 𝐴 ) ) = ( 𝐹 ↾ ( 𝐵 ∩ 𝐴 ) ) ) | |
| 8 | 6 7 | bitri | ⊢ ( ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ↔ ( 𝐺 ↾ ( 𝐵 ∩ 𝐴 ) ) = ( 𝐹 ↾ ( 𝐵 ∩ 𝐴 ) ) ) |
| 9 | fresaunres2 | ⊢ ( ( 𝐺 : 𝐵 ⟶ 𝐶 ∧ 𝐹 : 𝐴 ⟶ 𝐶 ∧ ( 𝐺 ↾ ( 𝐵 ∩ 𝐴 ) ) = ( 𝐹 ↾ ( 𝐵 ∩ 𝐴 ) ) ) → ( ( 𝐺 ∪ 𝐹 ) ↾ 𝐴 ) = 𝐹 ) | |
| 10 | 9 | 3com12 | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐺 ↾ ( 𝐵 ∩ 𝐴 ) ) = ( 𝐹 ↾ ( 𝐵 ∩ 𝐴 ) ) ) → ( ( 𝐺 ∪ 𝐹 ) ↾ 𝐴 ) = 𝐹 ) |
| 11 | 8 10 | syl3an3b | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐺 ∪ 𝐹 ) ↾ 𝐴 ) = 𝐹 ) |
| 12 | 2 11 | eqtrid | ⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐶 ∧ 𝐺 : 𝐵 ⟶ 𝐶 ∧ ( 𝐹 ↾ ( 𝐴 ∩ 𝐵 ) ) = ( 𝐺 ↾ ( 𝐴 ∩ 𝐵 ) ) ) → ( ( 𝐹 ∪ 𝐺 ) ↾ 𝐴 ) = 𝐹 ) |