This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of Quine p. 44. (Contributed by NM, 14-Apr-1995) Avoid ax-13 . (Revised by SN, 23-Nov-2022) Avoid ax-10 , ax-11 , ax-12 . (Revised by SN, 5-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | elabg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| Assertion | elabg | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elabg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | 1 | ax-gen | ⊢ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) |
| 3 | elabgt | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑥 ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) ) → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ { 𝑥 ∣ 𝜑 } ↔ 𝜓 ) ) |