This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for hashf1 . (Contributed by Mario Carneiro, 17-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | hashf1lem2.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| hashf1lem2.2 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | ||
| hashf1lem2.3 | ⊢ ( 𝜑 → ¬ 𝑧 ∈ 𝐴 ) | ||
| hashf1lem2.4 | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) | ||
| Assertion | hashf1lem2 | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashf1lem2.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | hashf1lem2.2 | ⊢ ( 𝜑 → 𝐵 ∈ Fin ) | |
| 3 | hashf1lem2.3 | ⊢ ( 𝜑 → ¬ 𝑧 ∈ 𝐴 ) | |
| 4 | hashf1lem2.4 | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐴 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) | |
| 5 | ssid | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } | |
| 6 | mapfi | ⊢ ( ( 𝐵 ∈ Fin ∧ 𝐴 ∈ Fin ) → ( 𝐵 ↑m 𝐴 ) ∈ Fin ) | |
| 7 | 2 1 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ↑m 𝐴 ) ∈ Fin ) |
| 8 | f1f | ⊢ ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 : 𝐴 ⟶ 𝐵 ) | |
| 9 | 2 1 | elmapd | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝐵 ) ) |
| 10 | 8 9 | imbitrrid | ⊢ ( 𝜑 → ( 𝑓 : 𝐴 –1-1→ 𝐵 → 𝑓 ∈ ( 𝐵 ↑m 𝐴 ) ) ) |
| 11 | 10 | abssdv | ⊢ ( 𝜑 → { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ ( 𝐵 ↑m 𝐴 ) ) |
| 12 | 7 11 | ssfid | ⊢ ( 𝜑 → { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ∈ Fin ) |
| 13 | sseq1 | ⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ ∅ ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) | |
| 14 | eleq2 | ⊢ ( 𝑥 = ∅ → ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ↔ ( 𝑓 ↾ 𝐴 ) ∈ ∅ ) ) | |
| 15 | noel | ⊢ ¬ ( 𝑓 ↾ 𝐴 ) ∈ ∅ | |
| 16 | 15 | pm2.21i | ⊢ ( ( 𝑓 ↾ 𝐴 ) ∈ ∅ → 𝑓 ∈ ∅ ) |
| 17 | 14 16 | biimtrdi | ⊢ ( 𝑥 = ∅ → ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 → 𝑓 ∈ ∅ ) ) |
| 18 | 17 | adantrd | ⊢ ( 𝑥 = ∅ → ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) → 𝑓 ∈ ∅ ) ) |
| 19 | 18 | abssdv | ⊢ ( 𝑥 = ∅ → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ ∅ ) |
| 20 | ss0 | ⊢ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ ∅ → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = ∅ ) | |
| 21 | 19 20 | syl | ⊢ ( 𝑥 = ∅ → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = ∅ ) |
| 22 | 21 | fveq2d | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ ∅ ) ) |
| 23 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 24 | 22 23 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = 0 ) |
| 25 | fveq2 | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) | |
| 26 | 25 23 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 ) |
| 27 | 26 | oveq2d | ⊢ ( 𝑥 = ∅ → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) |
| 28 | 24 27 | eqeq12d | ⊢ ( 𝑥 = ∅ → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ↔ 0 = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) ) |
| 29 | 13 28 | imbi12d | ⊢ ( 𝑥 = ∅ → ( ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ↔ ( ∅ ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → 0 = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) ) ) |
| 30 | 29 | imbi2d | ⊢ ( 𝑥 = ∅ → ( ( 𝜑 → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( ∅ ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → 0 = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) ) ) ) |
| 31 | sseq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) | |
| 32 | eleq2 | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ↔ ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ) ) | |
| 33 | 32 | anbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 34 | 33 | abbidv | ⊢ ( 𝑥 = 𝑦 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) |
| 35 | 34 | fveq2d | ⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) |
| 36 | fveq2 | ⊢ ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) | |
| 37 | 36 | oveq2d | ⊢ ( 𝑥 = 𝑦 → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) |
| 38 | 35 37 | eqeq12d | ⊢ ( 𝑥 = 𝑦 → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) ) |
| 39 | 31 38 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ↔ ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) ) ) |
| 40 | 39 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) ) ) ) |
| 41 | sseq1 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) | |
| 42 | eleq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ↔ ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ) ) | |
| 43 | 42 | anbi1d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 44 | 43 | abbidv | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) |
| 45 | 44 | fveq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) |
| 46 | fveq2 | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) | |
| 47 | 46 | oveq2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) |
| 48 | 45 47 | eqeq12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) |
| 49 | 41 48 | imbi12d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ↔ ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) |
| 50 | 49 | imbi2d | ⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑎 } ) → ( ( 𝜑 → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) ) |
| 51 | sseq1 | ⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) | |
| 52 | f1eq1 | ⊢ ( 𝑓 = 𝑦 → ( 𝑓 : 𝐴 –1-1→ 𝐵 ↔ 𝑦 : 𝐴 –1-1→ 𝐵 ) ) | |
| 53 | 52 | cbvabv | ⊢ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } |
| 54 | 53 | eqeq2i | ⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } ) |
| 55 | ssun1 | ⊢ 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) | |
| 56 | f1ssres | ⊢ ( ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ∧ 𝐴 ⊆ ( 𝐴 ∪ { 𝑧 } ) ) → ( 𝑓 ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) | |
| 57 | 55 56 | mpan2 | ⊢ ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → ( 𝑓 ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) |
| 58 | vex | ⊢ 𝑓 ∈ V | |
| 59 | 58 | resex | ⊢ ( 𝑓 ↾ 𝐴 ) ∈ V |
| 60 | f1eq1 | ⊢ ( 𝑦 = ( 𝑓 ↾ 𝐴 ) → ( 𝑦 : 𝐴 –1-1→ 𝐵 ↔ ( 𝑓 ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) ) | |
| 61 | 59 60 | elab | ⊢ ( ( 𝑓 ↾ 𝐴 ) ∈ { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } ↔ ( 𝑓 ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) |
| 62 | 57 61 | sylibr | ⊢ ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → ( 𝑓 ↾ 𝐴 ) ∈ { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } ) |
| 63 | eleq2 | ⊢ ( 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } → ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ↔ ( 𝑓 ↾ 𝐴 ) ∈ { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } ) ) | |
| 64 | 62 63 | imbitrrid | ⊢ ( 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } → ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ) ) |
| 65 | 64 | pm4.71rd | ⊢ ( 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } → ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 66 | 65 | bicomd | ⊢ ( 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } → ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) |
| 67 | 66 | abbidv | ⊢ ( 𝑥 = { 𝑦 ∣ 𝑦 : 𝐴 –1-1→ 𝐵 } → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) |
| 68 | 54 67 | sylbi | ⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) |
| 69 | 68 | fveq2d | ⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) ) |
| 70 | fveq2 | ⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) | |
| 71 | 70 | oveq2d | ⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) |
| 72 | 69 71 | eqeq12d | ⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) |
| 73 | 51 72 | imbi12d | ⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ↔ ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) ) |
| 74 | 73 | imbi2d | ⊢ ( 𝑥 = { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ( 𝜑 → ( 𝑥 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑥 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑥 ) ) ) ) ↔ ( 𝜑 → ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) ) ) |
| 75 | hashcl | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 76 | 2 75 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 77 | 76 | nn0cnd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) |
| 78 | hashcl | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 79 | 1 78 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 80 | 79 | nn0cnd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 81 | 77 80 | subcld | ⊢ ( 𝜑 → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) |
| 82 | 81 | mul01d | ⊢ ( 𝜑 → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) = 0 ) |
| 83 | 82 | eqcomd | ⊢ ( 𝜑 → 0 = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) |
| 84 | 83 | a1d | ⊢ ( 𝜑 → ( ∅ ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → 0 = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 0 ) ) ) |
| 85 | ssun1 | ⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑎 } ) | |
| 86 | sstr | ⊢ ( ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑎 } ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) → 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) | |
| 87 | 85 86 | mpan | ⊢ ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
| 88 | 87 | imim1i | ⊢ ( ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) ) |
| 89 | oveq1 | ⊢ ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) = ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) | |
| 90 | elun | ⊢ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) ∈ { 𝑎 } ) ) | |
| 91 | 59 | elsn | ⊢ ( ( 𝑓 ↾ 𝐴 ) ∈ { 𝑎 } ↔ ( 𝑓 ↾ 𝐴 ) = 𝑎 ) |
| 92 | 91 | orbi2i | ⊢ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) ∈ { 𝑎 } ) ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) = 𝑎 ) ) |
| 93 | 90 92 | bitri | ⊢ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ↔ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) = 𝑎 ) ) |
| 94 | 93 | anbi1i | ⊢ ( ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) = 𝑎 ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) |
| 95 | andir | ⊢ ( ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∨ ( 𝑓 ↾ 𝐴 ) = 𝑎 ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∨ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) | |
| 96 | 94 95 | bitri | ⊢ ( ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ↔ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∨ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) |
| 97 | 96 | abbii | ⊢ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∨ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } |
| 98 | unab | ⊢ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∪ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∨ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } | |
| 99 | 97 98 | eqtr4i | ⊢ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } = ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∪ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) |
| 100 | 99 | fveq2i | ⊢ ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∪ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) |
| 101 | snfi | ⊢ { 𝑧 } ∈ Fin | |
| 102 | unfi | ⊢ ( ( 𝐴 ∈ Fin ∧ { 𝑧 } ∈ Fin ) → ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) | |
| 103 | 1 101 102 | sylancl | ⊢ ( 𝜑 → ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) |
| 104 | mapvalg | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) → ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) = { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ) | |
| 105 | 2 103 104 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) = { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ) |
| 106 | mapfi | ⊢ ( ( 𝐵 ∈ Fin ∧ ( 𝐴 ∪ { 𝑧 } ) ∈ Fin ) → ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) ∈ Fin ) | |
| 107 | 2 103 106 | syl2anc | ⊢ ( 𝜑 → ( 𝐵 ↑m ( 𝐴 ∪ { 𝑧 } ) ) ∈ Fin ) |
| 108 | 105 107 | eqeltrrd | ⊢ ( 𝜑 → { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ∈ Fin ) |
| 109 | f1f | ⊢ ( 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 → 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) | |
| 110 | 109 | adantl | ⊢ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) → 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
| 111 | 110 | ss2abi | ⊢ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } |
| 112 | ssfi | ⊢ ( ( { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ∈ Fin ∧ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) | |
| 113 | 108 111 112 | sylancl | ⊢ ( 𝜑 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
| 114 | 113 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
| 115 | 109 | adantl | ⊢ ( ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) → 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 ) |
| 116 | 115 | ss2abi | ⊢ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } |
| 117 | ssfi | ⊢ ( ( { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ∈ Fin ∧ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ⊆ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) ⟶ 𝐵 } ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) | |
| 118 | 108 116 117 | sylancl | ⊢ ( 𝜑 → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
| 119 | 118 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
| 120 | inab | ⊢ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∩ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } | |
| 121 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ¬ 𝑎 ∈ 𝑦 ) | |
| 122 | abn0 | ⊢ ( { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } ≠ ∅ ↔ ∃ 𝑓 ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) ) | |
| 123 | simprl | ⊢ ( ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑓 ↾ 𝐴 ) = 𝑎 ) | |
| 124 | simpll | ⊢ ( ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ) | |
| 125 | 123 124 | eqeltrrd | ⊢ ( ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝑎 ∈ 𝑦 ) |
| 126 | 125 | exlimiv | ⊢ ( ∃ 𝑓 ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) → 𝑎 ∈ 𝑦 ) |
| 127 | 122 126 | sylbi | ⊢ ( { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } ≠ ∅ → 𝑎 ∈ 𝑦 ) |
| 128 | 127 | necon1bi | ⊢ ( ¬ 𝑎 ∈ 𝑦 → { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } = ∅ ) |
| 129 | 121 128 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → { 𝑓 ∣ ( ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ∧ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) ) } = ∅ ) |
| 130 | 120 129 | eqtrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∩ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ∅ ) |
| 131 | hashun | ⊢ ( ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ∧ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ∧ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∩ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ∅ ) → ( ♯ ‘ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∪ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) = ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) ) | |
| 132 | 114 119 130 131 | syl3anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∪ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) = ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) ) |
| 133 | 100 132 | eqtrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) ) |
| 134 | simpr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) → ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) | |
| 135 | 134 | unssbd | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) → { 𝑎 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
| 136 | vex | ⊢ 𝑎 ∈ V | |
| 137 | 136 | snss | ⊢ ( 𝑎 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ { 𝑎 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
| 138 | 135 137 | sylibr | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) → 𝑎 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) |
| 139 | f1eq1 | ⊢ ( 𝑓 = 𝑎 → ( 𝑓 : 𝐴 –1-1→ 𝐵 ↔ 𝑎 : 𝐴 –1-1→ 𝐵 ) ) | |
| 140 | 136 139 | elab | ⊢ ( 𝑎 ∈ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ↔ 𝑎 : 𝐴 –1-1→ 𝐵 ) |
| 141 | 138 140 | sylib | ⊢ ( ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) → 𝑎 : 𝐴 –1-1→ 𝐵 ) |
| 142 | 80 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 143 | 118 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin ) |
| 144 | hashcl | ⊢ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ∈ Fin → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ∈ ℕ0 ) | |
| 145 | 143 144 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ∈ ℕ0 ) |
| 146 | 145 | nn0cnd | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ∈ ℂ ) |
| 147 | 142 146 | pncan2d | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) − ( ♯ ‘ 𝐴 ) ) = ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) |
| 148 | f1f1orn | ⊢ ( 𝑎 : 𝐴 –1-1→ 𝐵 → 𝑎 : 𝐴 –1-1-onto→ ran 𝑎 ) | |
| 149 | 148 | adantl | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → 𝑎 : 𝐴 –1-1-onto→ ran 𝑎 ) |
| 150 | f1oen3g | ⊢ ( ( 𝑎 ∈ V ∧ 𝑎 : 𝐴 –1-1-onto→ ran 𝑎 ) → 𝐴 ≈ ran 𝑎 ) | |
| 151 | 136 149 150 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≈ ran 𝑎 ) |
| 152 | hasheni | ⊢ ( 𝐴 ≈ ran 𝑎 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ran 𝑎 ) ) | |
| 153 | 151 152 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ran 𝑎 ) ) |
| 154 | 1 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → 𝐴 ∈ Fin ) |
| 155 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → 𝐵 ∈ Fin ) |
| 156 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ¬ 𝑧 ∈ 𝐴 ) |
| 157 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ( ♯ ‘ 𝐴 ) + 1 ) ≤ ( ♯ ‘ 𝐵 ) ) |
| 158 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → 𝑎 : 𝐴 –1-1→ 𝐵 ) | |
| 159 | 154 155 156 157 158 | hashf1lem1 | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ≈ ( 𝐵 ∖ ran 𝑎 ) ) |
| 160 | hasheni | ⊢ ( { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ≈ ( 𝐵 ∖ ran 𝑎 ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ ( 𝐵 ∖ ran 𝑎 ) ) ) | |
| 161 | 159 160 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ♯ ‘ ( 𝐵 ∖ ran 𝑎 ) ) ) |
| 162 | 153 161 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) = ( ( ♯ ‘ ran 𝑎 ) + ( ♯ ‘ ( 𝐵 ∖ ran 𝑎 ) ) ) ) |
| 163 | f1f | ⊢ ( 𝑎 : 𝐴 –1-1→ 𝐵 → 𝑎 : 𝐴 ⟶ 𝐵 ) | |
| 164 | 163 | frnd | ⊢ ( 𝑎 : 𝐴 –1-1→ 𝐵 → ran 𝑎 ⊆ 𝐵 ) |
| 165 | 164 | adantl | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ran 𝑎 ⊆ 𝐵 ) |
| 166 | 155 165 | ssfid | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ran 𝑎 ∈ Fin ) |
| 167 | diffi | ⊢ ( 𝐵 ∈ Fin → ( 𝐵 ∖ ran 𝑎 ) ∈ Fin ) | |
| 168 | 155 167 | syl | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( 𝐵 ∖ ran 𝑎 ) ∈ Fin ) |
| 169 | disjdif | ⊢ ( ran 𝑎 ∩ ( 𝐵 ∖ ran 𝑎 ) ) = ∅ | |
| 170 | 169 | a1i | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝑎 ∩ ( 𝐵 ∖ ran 𝑎 ) ) = ∅ ) |
| 171 | hashun | ⊢ ( ( ran 𝑎 ∈ Fin ∧ ( 𝐵 ∖ ran 𝑎 ) ∈ Fin ∧ ( ran 𝑎 ∩ ( 𝐵 ∖ ran 𝑎 ) ) = ∅ ) → ( ♯ ‘ ( ran 𝑎 ∪ ( 𝐵 ∖ ran 𝑎 ) ) ) = ( ( ♯ ‘ ran 𝑎 ) + ( ♯ ‘ ( 𝐵 ∖ ran 𝑎 ) ) ) ) | |
| 172 | 166 168 170 171 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ ( ran 𝑎 ∪ ( 𝐵 ∖ ran 𝑎 ) ) ) = ( ( ♯ ‘ ran 𝑎 ) + ( ♯ ‘ ( 𝐵 ∖ ran 𝑎 ) ) ) ) |
| 173 | undif | ⊢ ( ran 𝑎 ⊆ 𝐵 ↔ ( ran 𝑎 ∪ ( 𝐵 ∖ ran 𝑎 ) ) = 𝐵 ) | |
| 174 | 165 173 | sylib | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ran 𝑎 ∪ ( 𝐵 ∖ ran 𝑎 ) ) = 𝐵 ) |
| 175 | 174 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ ( ran 𝑎 ∪ ( 𝐵 ∖ ran 𝑎 ) ) ) = ( ♯ ‘ 𝐵 ) ) |
| 176 | 162 172 175 | 3eqtr2d | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) = ( ♯ ‘ 𝐵 ) ) |
| 177 | 176 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) − ( ♯ ‘ 𝐴 ) ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) |
| 178 | 147 177 | eqtr3d | ⊢ ( ( 𝜑 ∧ 𝑎 : 𝐴 –1-1→ 𝐵 ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) |
| 179 | 141 178 | sylan2 | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) |
| 180 | 179 | oveq2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) = 𝑎 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) ) = ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
| 181 | 133 180 | eqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
| 182 | hashunsng | ⊢ ( 𝑎 ∈ V → ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) | |
| 183 | 182 | elv | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 184 | 183 | ad2antrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) = ( ( ♯ ‘ 𝑦 ) + 1 ) ) |
| 185 | 184 | oveq2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝑦 ) + 1 ) ) ) |
| 186 | 81 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ∈ ℂ ) |
| 187 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → 𝑦 ∈ Fin ) | |
| 188 | hashcl | ⊢ ( 𝑦 ∈ Fin → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) | |
| 189 | 187 188 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ 𝑦 ) ∈ ℕ0 ) |
| 190 | 189 | nn0cnd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ♯ ‘ 𝑦 ) ∈ ℂ ) |
| 191 | 1cnd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → 1 ∈ ℂ ) | |
| 192 | 186 190 191 | adddid | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ( ♯ ‘ 𝑦 ) + 1 ) ) = ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 1 ) ) ) |
| 193 | 186 | mulridd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 1 ) = ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) |
| 194 | 193 | oveq2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · 1 ) ) = ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
| 195 | 185 192 194 | 3eqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) = ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
| 196 | 181 195 | eqeq12d | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ↔ ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) = ( ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) + ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) ) ) ) |
| 197 | 89 196 | imbitrrid | ⊢ ( ( 𝜑 ∧ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ∧ ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) |
| 198 | 197 | expr | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ) → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) |
| 199 | 198 | a2d | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ) → ( ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) |
| 200 | 88 199 | syl5 | ⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) ) → ( ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) |
| 201 | 200 | expcom | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) → ( 𝜑 → ( ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) ) |
| 202 | 201 | a2d | ⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑦 ) → ( ( 𝜑 → ( 𝑦 ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ 𝑦 ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ 𝑦 ) ) ) ) → ( 𝜑 → ( ( 𝑦 ∪ { 𝑎 } ) ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ ( ( 𝑓 ↾ 𝐴 ) ∈ ( 𝑦 ∪ { 𝑎 } ) ∧ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 ) } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ ( 𝑦 ∪ { 𝑎 } ) ) ) ) ) ) ) |
| 203 | 30 40 50 74 84 202 | findcard2s | ⊢ ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ∈ Fin → ( 𝜑 → ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) ) |
| 204 | 12 203 | mpcom | ⊢ ( 𝜑 → ( { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ⊆ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) ) |
| 205 | 5 204 | mpi | ⊢ ( 𝜑 → ( ♯ ‘ { 𝑓 ∣ 𝑓 : ( 𝐴 ∪ { 𝑧 } ) –1-1→ 𝐵 } ) = ( ( ( ♯ ‘ 𝐵 ) − ( ♯ ‘ 𝐴 ) ) · ( ♯ ‘ { 𝑓 ∣ 𝑓 : 𝐴 –1-1→ 𝐵 } ) ) ) |