This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A coefficient of the polynomial represented as a sum of scaled monomials is the coefficient of the corresponding scaled monomial. (Contributed by AV, 13-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummonply1.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| gsummonply1.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| gsummonply1.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| gsummonply1.e | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | ||
| gsummonply1.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| gsummonply1.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| gsummonply1.m | ⊢ ∗ = ( ·𝑠 ‘ 𝑃 ) | ||
| gsummonply1.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| gsummonply1.a | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 ) | ||
| gsummonply1.f | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) finSupp 0 ) | ||
| gsummonply1.l | ⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) | ||
| Assertion | gsummoncoe1 | ⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummonply1.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | gsummonply1.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | gsummonply1.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 4 | gsummonply1.e | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | |
| 5 | gsummonply1.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | gsummonply1.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 7 | gsummonply1.m | ⊢ ∗ = ( ·𝑠 ‘ 𝑃 ) | |
| 8 | gsummonply1.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 9 | gsummonply1.a | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 ) | |
| 10 | gsummonply1.f | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) finSupp 0 ) | |
| 11 | gsummonply1.l | ⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) | |
| 12 | 9 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ 𝐾 ) |
| 13 | 12 | fmpttd | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) : ℕ0 ⟶ 𝐾 ) |
| 14 | 6 | fvexi | ⊢ 𝐾 ∈ V |
| 15 | 14 | a1i | ⊢ ( 𝜑 → 𝐾 ∈ V ) |
| 16 | nn0ex | ⊢ ℕ0 ∈ V | |
| 17 | elmapg | ⊢ ( ( 𝐾 ∈ V ∧ ℕ0 ∈ V ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ∈ ( 𝐾 ↑m ℕ0 ) ↔ ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) : ℕ0 ⟶ 𝐾 ) ) | |
| 18 | 15 16 17 | sylancl | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ∈ ( 𝐾 ↑m ℕ0 ) ↔ ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) : ℕ0 ⟶ 𝐾 ) ) |
| 19 | 13 18 | mpbird | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ∈ ( 𝐾 ↑m ℕ0 ) ) |
| 20 | 8 | fvexi | ⊢ 0 ∈ V |
| 21 | fsuppmapnn0ub | ⊢ ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ∈ ( 𝐾 ↑m ℕ0 ) ∧ 0 ∈ V ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) finSupp 0 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ) ) ) | |
| 22 | 19 20 21 | sylancl | ⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) finSupp 0 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ) ) ) |
| 23 | 10 22 | mpd | ⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ) ) |
| 24 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → 𝑥 ∈ ℕ0 ) | |
| 25 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 ) |
| 26 | rspcsbela | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 ∈ 𝐾 ) | |
| 27 | 24 25 26 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 ∈ 𝐾 ) |
| 28 | eqid | ⊢ ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) = ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) | |
| 29 | 28 | fvmpts | ⊢ ( ( 𝑥 ∈ ℕ0 ∧ ⦋ 𝑥 / 𝑘 ⦌ 𝐴 ∈ 𝐾 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = ⦋ 𝑥 / 𝑘 ⦌ 𝐴 ) |
| 30 | 24 27 29 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = ⦋ 𝑥 / 𝑘 ⦌ 𝐴 ) |
| 31 | 30 | eqeq1d | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ↔ ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) |
| 32 | 31 | imbi2d | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑠 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ) ↔ ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ) |
| 33 | 32 | biimpd | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑠 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ) → ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ) |
| 34 | 33 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ) |
| 35 | eqid | ⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) | |
| 36 | 1 | ply1ring | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 37 | ringcmn | ⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) | |
| 38 | 5 36 37 | 3syl | ⊢ ( 𝜑 → 𝑃 ∈ CMnd ) |
| 39 | 38 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → 𝑃 ∈ CMnd ) |
| 40 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑅 ∈ Ring ) |
| 41 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ 𝐾 ) | |
| 42 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑘 ∈ ℕ0 ) | |
| 43 | eqid | ⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) | |
| 44 | 6 1 3 7 43 4 2 | ply1tmcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐾 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 45 | 40 41 42 44 | syl3anc | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 46 | 45 | 3expia | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ∈ 𝐾 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) ) |
| 47 | 46 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 → ∀ 𝑘 ∈ ℕ0 ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) ) |
| 48 | 9 47 | mpd | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 50 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → 𝑠 ∈ ℕ0 ) | |
| 51 | nfv | ⊢ Ⅎ 𝑘 𝑠 < 𝑥 | |
| 52 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑥 / 𝑘 ⦌ 𝐴 | |
| 53 | 52 | nfeq1 | ⊢ Ⅎ 𝑘 ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 |
| 54 | 51 53 | nfim | ⊢ Ⅎ 𝑘 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) |
| 55 | nfv | ⊢ Ⅎ 𝑥 ( 𝑠 < 𝑘 → ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 0 ) | |
| 56 | breq2 | ⊢ ( 𝑥 = 𝑘 → ( 𝑠 < 𝑥 ↔ 𝑠 < 𝑘 ) ) | |
| 57 | csbeq1 | ⊢ ( 𝑥 = 𝑘 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = ⦋ 𝑘 / 𝑘 ⦌ 𝐴 ) | |
| 58 | 57 | eqeq1d | ⊢ ( 𝑥 = 𝑘 → ( ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ↔ ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 0 ) ) |
| 59 | 56 58 | imbi12d | ⊢ ( 𝑥 = 𝑘 → ( ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ↔ ( 𝑠 < 𝑘 → ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 0 ) ) ) |
| 60 | 54 55 59 | cbvralw | ⊢ ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ↔ ∀ 𝑘 ∈ ℕ0 ( 𝑠 < 𝑘 → ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 0 ) ) |
| 61 | csbid | ⊢ ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 𝐴 | |
| 62 | 61 | eqeq1i | ⊢ ( ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 0 ↔ 𝐴 = 0 ) |
| 63 | oveq1 | ⊢ ( 𝐴 = 0 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0 ∗ ( 𝑘 ↑ 𝑋 ) ) ) | |
| 64 | 1 | ply1sca | ⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 65 | 5 64 | syl | ⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 66 | 65 | fveq2d | ⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 67 | 8 66 | eqtrid | ⊢ ( 𝜑 → 0 = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 68 | 67 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 69 | 68 | oveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 0 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
| 70 | 1 | ply1lmod | ⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 71 | 5 70 | syl | ⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 72 | 71 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑃 ∈ LMod ) |
| 73 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 74 | 43 73 | mgpbas | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 75 | 43 | ringmgp | ⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 76 | 5 36 75 | 3syl | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 77 | 76 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 78 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 79 | 3 1 73 | vr1cl | ⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 80 | 5 79 | syl | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 81 | 80 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 82 | 74 4 77 78 81 | mulgnn0cld | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 83 | eqid | ⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) | |
| 84 | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) | |
| 85 | 73 83 7 84 35 | lmod0vs | ⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 86 | 72 82 85 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 87 | 69 86 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 0 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 88 | 63 87 | sylan9eqr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 89 | 88 | ex | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 = 0 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 90 | 62 89 | biimtrid | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 0 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 91 | 90 | imim2d | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑠 < 𝑘 → ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑠 < 𝑘 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 92 | 91 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑘 ∈ ℕ0 ( 𝑠 < 𝑘 → ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 0 ) → ∀ 𝑘 ∈ ℕ0 ( 𝑠 < 𝑘 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 93 | 60 92 | biimtrid | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) → ∀ 𝑘 ∈ ℕ0 ( 𝑠 < 𝑘 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 94 | 93 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝑠 < 𝑘 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 95 | 2 35 39 49 50 94 | gsummptnn0fz | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 96 | 95 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 97 | 96 | fveq1d | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) ) |
| 98 | 5 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → 𝑅 ∈ Ring ) |
| 99 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → 𝐿 ∈ ℕ0 ) |
| 100 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑠 ) → 𝑘 ∈ ℕ0 ) | |
| 101 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝜑 ) | |
| 102 | 12 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ 𝐾 ) |
| 103 | 101 78 102 | 3jca | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ) |
| 104 | 100 103 | sylan2 | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ) |
| 105 | 104 45 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 106 | 105 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ∀ 𝑘 ∈ ( 0 ... 𝑠 ) ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 107 | 106 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ∀ 𝑘 ∈ ( 0 ... 𝑠 ) ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 108 | fzfid | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 0 ... 𝑠 ) ∈ Fin ) | |
| 109 | 1 2 98 99 107 108 | coe1fzgsumd | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( coe1 ‘ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ‘ 𝐿 ) ) ) ) |
| 110 | nfv | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) | |
| 111 | nfcv | ⊢ Ⅎ 𝑘 ℕ0 | |
| 112 | 111 54 | nfralw | ⊢ Ⅎ 𝑘 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) |
| 113 | 110 112 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) |
| 114 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 𝑅 ∈ Ring ) |
| 115 | 12 | expcom | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝜑 → 𝐴 ∈ 𝐾 ) ) |
| 116 | 115 100 | syl11 | ⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝑠 ) → 𝐴 ∈ 𝐾 ) ) |
| 117 | 116 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) → 𝐴 ∈ 𝐾 ) ) |
| 118 | 117 | imp | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 𝐴 ∈ 𝐾 ) |
| 119 | 100 | adantl | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 𝑘 ∈ ℕ0 ) |
| 120 | 8 6 1 3 7 43 4 | coe1tm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐾 ∧ 𝑘 ∈ ℕ0 ) → ( coe1 ‘ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑘 , 𝐴 , 0 ) ) ) |
| 121 | 114 118 119 120 | syl3anc | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → ( coe1 ‘ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑘 , 𝐴 , 0 ) ) ) |
| 122 | eqeq1 | ⊢ ( 𝑛 = 𝐿 → ( 𝑛 = 𝑘 ↔ 𝐿 = 𝑘 ) ) | |
| 123 | 122 | ifbid | ⊢ ( 𝑛 = 𝐿 → if ( 𝑛 = 𝑘 , 𝐴 , 0 ) = if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) |
| 124 | 123 | adantl | ⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) ∧ 𝑛 = 𝐿 ) → if ( 𝑛 = 𝑘 , 𝐴 , 0 ) = if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) |
| 125 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 𝐿 ∈ ℕ0 ) |
| 126 | 6 8 | ring0cl | ⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐾 ) |
| 127 | 5 126 | syl | ⊢ ( 𝜑 → 0 ∈ 𝐾 ) |
| 128 | 127 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 0 ∈ 𝐾 ) |
| 129 | 118 128 | ifcld | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ∈ 𝐾 ) |
| 130 | 121 124 125 129 | fvmptd | ⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → ( ( coe1 ‘ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ‘ 𝐿 ) = if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) |
| 131 | 113 130 | mpteq2da | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( coe1 ‘ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ‘ 𝐿 ) ) = ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) |
| 132 | 131 | oveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( coe1 ‘ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ‘ 𝐿 ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) ) |
| 133 | breq2 | ⊢ ( 𝑥 = 𝐿 → ( 𝑠 < 𝑥 ↔ 𝑠 < 𝐿 ) ) | |
| 134 | csbeq1 | ⊢ ( 𝑥 = 𝐿 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) | |
| 135 | 134 | eqeq1d | ⊢ ( 𝑥 = 𝐿 → ( ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ↔ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) ) |
| 136 | 133 135 | imbi12d | ⊢ ( 𝑥 = 𝐿 → ( ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ↔ ( 𝑠 < 𝐿 → ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) ) ) |
| 137 | 136 | rspcva | ⊢ ( ( 𝐿 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑠 < 𝐿 → ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) ) |
| 138 | nfv | ⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) | |
| 139 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝐿 / 𝑘 ⦌ 𝐴 | |
| 140 | 139 | nfeq1 | ⊢ Ⅎ 𝑘 ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 |
| 141 | 138 140 | nfan | ⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) |
| 142 | elfz2nn0 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑠 ) ↔ ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ∧ 𝑘 ≤ 𝑠 ) ) | |
| 143 | nn0re | ⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) | |
| 144 | 143 | ad2antrr | ⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) → 𝑘 ∈ ℝ ) |
| 145 | nn0re | ⊢ ( 𝑠 ∈ ℕ0 → 𝑠 ∈ ℝ ) | |
| 146 | 145 | adantl | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → 𝑠 ∈ ℝ ) |
| 147 | 146 | adantr | ⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) → 𝑠 ∈ ℝ ) |
| 148 | nn0re | ⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℝ ) | |
| 149 | 148 | adantl | ⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) → 𝐿 ∈ ℝ ) |
| 150 | lelttr | ⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( ( 𝑘 ≤ 𝑠 ∧ 𝑠 < 𝐿 ) → 𝑘 < 𝐿 ) ) | |
| 151 | 144 147 149 150 | syl3anc | ⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) → ( ( 𝑘 ≤ 𝑠 ∧ 𝑠 < 𝐿 ) → 𝑘 < 𝐿 ) ) |
| 152 | animorr | ⊢ ( ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑘 < 𝐿 ) → ( 𝐿 < 𝑘 ∨ 𝑘 < 𝐿 ) ) | |
| 153 | df-ne | ⊢ ( 𝐿 ≠ 𝑘 ↔ ¬ 𝐿 = 𝑘 ) | |
| 154 | 143 | adantr | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → 𝑘 ∈ ℝ ) |
| 155 | lttri2 | ⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝐿 ≠ 𝑘 ↔ ( 𝐿 < 𝑘 ∨ 𝑘 < 𝐿 ) ) ) | |
| 156 | 148 154 155 | syl2anr | ⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) → ( 𝐿 ≠ 𝑘 ↔ ( 𝐿 < 𝑘 ∨ 𝑘 < 𝐿 ) ) ) |
| 157 | 156 | adantr | ⊢ ( ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑘 < 𝐿 ) → ( 𝐿 ≠ 𝑘 ↔ ( 𝐿 < 𝑘 ∨ 𝑘 < 𝐿 ) ) ) |
| 158 | 153 157 | bitr3id | ⊢ ( ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑘 < 𝐿 ) → ( ¬ 𝐿 = 𝑘 ↔ ( 𝐿 < 𝑘 ∨ 𝑘 < 𝐿 ) ) ) |
| 159 | 152 158 | mpbird | ⊢ ( ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑘 < 𝐿 ) → ¬ 𝐿 = 𝑘 ) |
| 160 | 159 | ex | ⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) → ( 𝑘 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) |
| 161 | 151 160 | syld | ⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) → ( ( 𝑘 ≤ 𝑠 ∧ 𝑠 < 𝐿 ) → ¬ 𝐿 = 𝑘 ) ) |
| 162 | 161 | exp4b | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( 𝐿 ∈ ℕ0 → ( 𝑘 ≤ 𝑠 → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) ) |
| 163 | 162 | expimpd | ⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑠 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑘 ≤ 𝑠 → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) ) |
| 164 | 163 | com23 | ⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 ≤ 𝑠 → ( ( 𝑠 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) ) |
| 165 | 164 | imp | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑘 ≤ 𝑠 ) → ( ( 𝑠 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) |
| 166 | 165 | 3adant2 | ⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ∧ 𝑘 ≤ 𝑠 ) → ( ( 𝑠 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) |
| 167 | 142 166 | sylbi | ⊢ ( 𝑘 ∈ ( 0 ... 𝑠 ) → ( ( 𝑠 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) |
| 168 | 167 | expd | ⊢ ( 𝑘 ∈ ( 0 ... 𝑠 ) → ( 𝑠 ∈ ℕ0 → ( 𝐿 ∈ ℕ0 → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) ) |
| 169 | 11 168 | syl7 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑠 ) → ( 𝑠 ∈ ℕ0 → ( 𝜑 → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) ) |
| 170 | 169 | com12 | ⊢ ( 𝑠 ∈ ℕ0 → ( 𝑘 ∈ ( 0 ... 𝑠 ) → ( 𝜑 → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) ) |
| 171 | 170 | com24 | ⊢ ( 𝑠 ∈ ℕ0 → ( 𝑠 < 𝐿 → ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝑠 ) → ¬ 𝐿 = 𝑘 ) ) ) ) |
| 172 | 171 | imp | ⊢ ( ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) → ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝑠 ) → ¬ 𝐿 = 𝑘 ) ) ) |
| 173 | 172 | impcom | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) → ¬ 𝐿 = 𝑘 ) ) |
| 174 | 173 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) → ¬ 𝐿 = 𝑘 ) ) |
| 175 | 174 | imp | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → ¬ 𝐿 = 𝑘 ) |
| 176 | 175 | iffalsed | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → if ( 𝐿 = 𝑘 , 𝐴 , 0 ) = 0 ) |
| 177 | 141 176 | mpteq2da | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) = ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ 0 ) ) |
| 178 | 177 | oveq2d | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ 0 ) ) ) |
| 179 | ringmnd | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) | |
| 180 | 5 179 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 181 | 180 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) → 𝑅 ∈ Mnd ) |
| 182 | ovex | ⊢ ( 0 ... 𝑠 ) ∈ V | |
| 183 | 8 | gsumz | ⊢ ( ( 𝑅 ∈ Mnd ∧ ( 0 ... 𝑠 ) ∈ V ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ 0 ) ) = 0 ) |
| 184 | 181 182 183 | sylancl | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ 0 ) ) = 0 ) |
| 185 | 184 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ 0 ) ) = 0 ) |
| 186 | id | ⊢ ( ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 → ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) | |
| 187 | 186 | eqcomd | ⊢ ( ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 → 0 = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |
| 188 | 187 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → 0 = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |
| 189 | 178 185 188 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |
| 190 | 189 | ex | ⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) → ( ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) |
| 191 | 190 | expr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( 𝑠 < 𝐿 → ( ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) ) |
| 192 | 191 | a2d | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ( 𝑠 < 𝐿 → ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑠 < 𝐿 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) ) |
| 193 | 192 | ex | ⊢ ( 𝜑 → ( 𝑠 ∈ ℕ0 → ( ( 𝑠 < 𝐿 → ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑠 < 𝐿 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) ) ) |
| 194 | 193 | com13 | ⊢ ( ( 𝑠 < 𝐿 → ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑠 ∈ ℕ0 → ( 𝜑 → ( 𝑠 < 𝐿 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) ) ) |
| 195 | 137 194 | syl | ⊢ ( ( 𝐿 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑠 ∈ ℕ0 → ( 𝜑 → ( 𝑠 < 𝐿 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) ) ) |
| 196 | 195 | ex | ⊢ ( 𝐿 ∈ ℕ0 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑠 ∈ ℕ0 → ( 𝜑 → ( 𝑠 < 𝐿 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) ) ) ) |
| 197 | 196 | com24 | ⊢ ( 𝐿 ∈ ℕ0 → ( 𝜑 → ( 𝑠 ∈ ℕ0 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑠 < 𝐿 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) ) ) ) |
| 198 | 11 197 | mpcom | ⊢ ( 𝜑 → ( 𝑠 ∈ ℕ0 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑠 < 𝐿 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) ) ) |
| 199 | 198 | imp31 | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑠 < 𝐿 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) |
| 200 | 199 | com12 | ⊢ ( 𝑠 < 𝐿 → ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) |
| 201 | pm3.2 | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ¬ 𝑠 < 𝐿 → ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ¬ 𝑠 < 𝐿 ) ) ) | |
| 202 | 201 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( ¬ 𝑠 < 𝐿 → ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ¬ 𝑠 < 𝐿 ) ) ) |
| 203 | 180 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ¬ 𝑠 < 𝐿 ) → 𝑅 ∈ Mnd ) |
| 204 | 182 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ¬ 𝑠 < 𝐿 ) → ( 0 ... 𝑠 ) ∈ V ) |
| 205 | 11 | nn0red | ⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
| 206 | lenlt | ⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑠 ∈ ℝ ) → ( 𝐿 ≤ 𝑠 ↔ ¬ 𝑠 < 𝐿 ) ) | |
| 207 | 205 145 206 | syl2an | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( 𝐿 ≤ 𝑠 ↔ ¬ 𝑠 < 𝐿 ) ) |
| 208 | 11 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ≤ 𝑠 ) → 𝐿 ∈ ℕ0 ) |
| 209 | simplr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ≤ 𝑠 ) → 𝑠 ∈ ℕ0 ) | |
| 210 | simpr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ≤ 𝑠 ) → 𝐿 ≤ 𝑠 ) | |
| 211 | elfz2nn0 | ⊢ ( 𝐿 ∈ ( 0 ... 𝑠 ) ↔ ( 𝐿 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ∧ 𝐿 ≤ 𝑠 ) ) | |
| 212 | 208 209 210 211 | syl3anbrc | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ≤ 𝑠 ) → 𝐿 ∈ ( 0 ... 𝑠 ) ) |
| 213 | 212 | ex | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( 𝐿 ≤ 𝑠 → 𝐿 ∈ ( 0 ... 𝑠 ) ) ) |
| 214 | 207 213 | sylbird | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ¬ 𝑠 < 𝐿 → 𝐿 ∈ ( 0 ... 𝑠 ) ) ) |
| 215 | 214 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ¬ 𝑠 < 𝐿 ) → 𝐿 ∈ ( 0 ... 𝑠 ) ) |
| 216 | eqcom | ⊢ ( 𝐿 = 𝑘 ↔ 𝑘 = 𝐿 ) | |
| 217 | ifbi | ⊢ ( ( 𝐿 = 𝑘 ↔ 𝑘 = 𝐿 ) → if ( 𝐿 = 𝑘 , 𝐴 , 0 ) = if ( 𝑘 = 𝐿 , 𝐴 , 0 ) ) | |
| 218 | 216 217 | ax-mp | ⊢ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) = if ( 𝑘 = 𝐿 , 𝐴 , 0 ) |
| 219 | 218 | mpteq2i | ⊢ ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) = ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝑘 = 𝐿 , 𝐴 , 0 ) ) |
| 220 | 12 6 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 221 | 220 | ex | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 → 𝐴 ∈ ( Base ‘ 𝑅 ) ) ) |
| 222 | 221 | adantr | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 → 𝐴 ∈ ( Base ‘ 𝑅 ) ) ) |
| 223 | 222 100 | impel | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 224 | 223 | ralrimiva | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ∀ 𝑘 ∈ ( 0 ... 𝑠 ) 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 225 | 224 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ¬ 𝑠 < 𝐿 ) → ∀ 𝑘 ∈ ( 0 ... 𝑠 ) 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 226 | 8 203 204 215 219 225 | gsummpt1n0 | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ¬ 𝑠 < 𝐿 ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |
| 227 | 202 226 | syl6com | ⊢ ( ¬ 𝑠 < 𝐿 → ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) |
| 228 | 200 227 | pm2.61i | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |
| 229 | 132 228 | eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( coe1 ‘ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ‘ 𝐿 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |
| 230 | 97 109 229 | 3eqtrd | ⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |
| 231 | 230 | ex | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) |
| 232 | 34 231 | syld | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) |
| 233 | 232 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) |
| 234 | 23 233 | mpd | ⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |