This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence theorem for conditional operators. (Contributed by Raph Levien, 15-Jan-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifbi | ⊢ ( ( 𝜑 ↔ 𝜓 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfbi3 | ⊢ ( ( 𝜑 ↔ 𝜓 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) ) | |
| 2 | iftrue | ⊢ ( 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐴 ) | |
| 3 | iftrue | ⊢ ( 𝜓 → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐴 ) | |
| 4 | 3 | eqcomd | ⊢ ( 𝜓 → 𝐴 = if ( 𝜓 , 𝐴 , 𝐵 ) ) |
| 5 | 2 4 | sylan9eq | ⊢ ( ( 𝜑 ∧ 𝜓 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) ) |
| 6 | iffalse | ⊢ ( ¬ 𝜑 → if ( 𝜑 , 𝐴 , 𝐵 ) = 𝐵 ) | |
| 7 | iffalse | ⊢ ( ¬ 𝜓 → if ( 𝜓 , 𝐴 , 𝐵 ) = 𝐵 ) | |
| 8 | 7 | eqcomd | ⊢ ( ¬ 𝜓 → 𝐵 = if ( 𝜓 , 𝐴 , 𝐵 ) ) |
| 9 | 6 8 | sylan9eq | ⊢ ( ( ¬ 𝜑 ∧ ¬ 𝜓 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) ) |
| 10 | 5 9 | jaoi | ⊢ ( ( ( 𝜑 ∧ 𝜓 ) ∨ ( ¬ 𝜑 ∧ ¬ 𝜓 ) ) → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) ) |
| 11 | 1 10 | sylbi | ⊢ ( ( 𝜑 ↔ 𝜓 ) → if ( 𝜑 , 𝐴 , 𝐵 ) = if ( 𝜓 , 𝐴 , 𝐵 ) ) |