This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 . (Contributed by AV, 11-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummpt1n0.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| gsummpt1n0.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsummpt1n0.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| gsummpt1n0.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | ||
| gsummpt1n0.f | ⊢ 𝐹 = ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) | ||
| gsummpt1n0.a | ⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝐼 𝐴 ∈ ( Base ‘ 𝐺 ) ) | ||
| Assertion | gsummpt1n0 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ⦋ 𝑋 / 𝑛 ⦌ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummpt1n0.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | gsummpt1n0.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 3 | gsummpt1n0.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 4 | gsummpt1n0.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | |
| 5 | gsummpt1n0.f | ⊢ 𝐹 = ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) | |
| 6 | gsummpt1n0.a | ⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝐼 𝐴 ∈ ( Base ‘ 𝐺 ) ) | |
| 7 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 8 | 6 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 9 | 7 1 | mndidcl | ⊢ ( 𝐺 ∈ Mnd → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 10 | 2 9 | syl | ⊢ ( 𝜑 → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → 0 ∈ ( Base ‘ 𝐺 ) ) |
| 12 | 8 11 | ifcld | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐼 ) → if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ∈ ( Base ‘ 𝐺 ) ) |
| 13 | 12 5 | fmptd | ⊢ ( 𝜑 → 𝐹 : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) |
| 14 | 5 | oveq1i | ⊢ ( 𝐹 supp 0 ) = ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) |
| 15 | eldifsni | ⊢ ( 𝑛 ∈ ( 𝐼 ∖ { 𝑋 } ) → 𝑛 ≠ 𝑋 ) | |
| 16 | 15 | adantl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐼 ∖ { 𝑋 } ) ) → 𝑛 ≠ 𝑋 ) |
| 17 | ifnefalse | ⊢ ( 𝑛 ≠ 𝑋 → if ( 𝑛 = 𝑋 , 𝐴 , 0 ) = 0 ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( 𝐼 ∖ { 𝑋 } ) ) → if ( 𝑛 = 𝑋 , 𝐴 , 0 ) = 0 ) |
| 19 | 18 3 | suppss2 | ⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) supp 0 ) ⊆ { 𝑋 } ) |
| 20 | 14 19 | eqsstrid | ⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ { 𝑋 } ) |
| 21 | 7 1 2 3 4 13 20 | gsumpt | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 22 | nfcv | ⊢ Ⅎ 𝑦 if ( 𝑛 = 𝑋 , 𝐴 , 0 ) | |
| 23 | nfv | ⊢ Ⅎ 𝑛 𝑦 = 𝑋 | |
| 24 | nfcsb1v | ⊢ Ⅎ 𝑛 ⦋ 𝑦 / 𝑛 ⦌ 𝐴 | |
| 25 | nfcv | ⊢ Ⅎ 𝑛 0 | |
| 26 | 23 24 25 | nfif | ⊢ Ⅎ 𝑛 if ( 𝑦 = 𝑋 , ⦋ 𝑦 / 𝑛 ⦌ 𝐴 , 0 ) |
| 27 | eqeq1 | ⊢ ( 𝑛 = 𝑦 → ( 𝑛 = 𝑋 ↔ 𝑦 = 𝑋 ) ) | |
| 28 | csbeq1a | ⊢ ( 𝑛 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ) | |
| 29 | 27 28 | ifbieq1d | ⊢ ( 𝑛 = 𝑦 → if ( 𝑛 = 𝑋 , 𝐴 , 0 ) = if ( 𝑦 = 𝑋 , ⦋ 𝑦 / 𝑛 ⦌ 𝐴 , 0 ) ) |
| 30 | 22 26 29 | cbvmpt | ⊢ ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , ⦋ 𝑦 / 𝑛 ⦌ 𝐴 , 0 ) ) |
| 31 | 5 30 | eqtri | ⊢ 𝐹 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑋 , ⦋ 𝑦 / 𝑛 ⦌ 𝐴 , 0 ) ) |
| 32 | iftrue | ⊢ ( 𝑦 = 𝑋 → if ( 𝑦 = 𝑋 , ⦋ 𝑦 / 𝑛 ⦌ 𝐴 , 0 ) = ⦋ 𝑦 / 𝑛 ⦌ 𝐴 ) | |
| 33 | csbeq1 | ⊢ ( 𝑦 = 𝑋 → ⦋ 𝑦 / 𝑛 ⦌ 𝐴 = ⦋ 𝑋 / 𝑛 ⦌ 𝐴 ) | |
| 34 | 32 33 | eqtrd | ⊢ ( 𝑦 = 𝑋 → if ( 𝑦 = 𝑋 , ⦋ 𝑦 / 𝑛 ⦌ 𝐴 , 0 ) = ⦋ 𝑋 / 𝑛 ⦌ 𝐴 ) |
| 35 | rspcsbela | ⊢ ( ( 𝑋 ∈ 𝐼 ∧ ∀ 𝑛 ∈ 𝐼 𝐴 ∈ ( Base ‘ 𝐺 ) ) → ⦋ 𝑋 / 𝑛 ⦌ 𝐴 ∈ ( Base ‘ 𝐺 ) ) | |
| 36 | 4 6 35 | syl2anc | ⊢ ( 𝜑 → ⦋ 𝑋 / 𝑛 ⦌ 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 37 | 31 34 4 36 | fvmptd3 | ⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) = ⦋ 𝑋 / 𝑛 ⦌ 𝐴 ) |
| 38 | 21 37 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ⦋ 𝑋 / 𝑛 ⦌ 𝐴 ) |