This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of an evaluated coefficient in a finite group sum of polynomials. (Contributed by AV, 8-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | coe1fzgsumd.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| coe1fzgsumd.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | ||
| coe1fzgsumd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| coe1fzgsumd.k | ⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) | ||
| coe1fzgsumd.m | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝐵 ) | ||
| coe1fzgsumd.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | ||
| Assertion | coe1fzgsumd | ⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coe1fzgsumd.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | coe1fzgsumd.b | ⊢ 𝐵 = ( Base ‘ 𝑃 ) | |
| 3 | coe1fzgsumd.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 4 | coe1fzgsumd.k | ⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) | |
| 5 | coe1fzgsumd.m | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝐵 ) | |
| 6 | coe1fzgsumd.n | ⊢ ( 𝜑 → 𝑁 ∈ Fin ) | |
| 7 | raleq | ⊢ ( 𝑛 = ∅ → ( ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝐵 ↔ ∀ 𝑥 ∈ ∅ 𝑀 ∈ 𝐵 ) ) | |
| 8 | 7 | anbi2d | ⊢ ( 𝑛 = ∅ → ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝐵 ) ↔ ( 𝜑 ∧ ∀ 𝑥 ∈ ∅ 𝑀 ∈ 𝐵 ) ) ) |
| 9 | mpteq1 | ⊢ ( 𝑛 = ∅ → ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) = ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) | |
| 10 | 9 | oveq2d | ⊢ ( 𝑛 = ∅ → ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) = ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) |
| 11 | 10 | fveq2d | ⊢ ( 𝑛 = ∅ → ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ) |
| 12 | 11 | fveq1d | ⊢ ( 𝑛 = ∅ → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝐾 ) ) |
| 13 | mpteq1 | ⊢ ( 𝑛 = ∅ → ( 𝑥 ∈ 𝑛 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑥 ∈ ∅ ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) | |
| 14 | 13 | oveq2d | ⊢ ( 𝑛 = ∅ → ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ ∅ ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |
| 15 | 12 14 | eqeq12d | ⊢ ( 𝑛 = ∅ → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ↔ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ∅ ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) |
| 16 | 8 15 | imbi12d | ⊢ ( 𝑛 = ∅ → ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ↔ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ∅ 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ∅ ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |
| 17 | raleq | ⊢ ( 𝑛 = 𝑚 → ( ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ) | |
| 18 | 17 | anbi2d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝐵 ) ↔ ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) ) ) |
| 19 | mpteq1 | ⊢ ( 𝑛 = 𝑚 → ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) = ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) | |
| 20 | 19 | oveq2d | ⊢ ( 𝑛 = 𝑚 → ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) = ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) |
| 21 | 20 | fveq2d | ⊢ ( 𝑛 = 𝑚 → ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ) |
| 22 | 21 | fveq1d | ⊢ ( 𝑛 = 𝑚 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) ) |
| 23 | mpteq1 | ⊢ ( 𝑛 = 𝑚 → ( 𝑥 ∈ 𝑛 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) | |
| 24 | 23 | oveq2d | ⊢ ( 𝑛 = 𝑚 → ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |
| 25 | 22 24 | eqeq12d | ⊢ ( 𝑛 = 𝑚 → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ↔ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) |
| 26 | 18 25 | imbi12d | ⊢ ( 𝑛 = 𝑚 → ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ↔ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |
| 27 | raleq | ⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝐵 ↔ ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 ) ) | |
| 28 | 27 | anbi2d | ⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝐵 ) ↔ ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 ) ) ) |
| 29 | mpteq1 | ⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) = ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) | |
| 30 | 29 | oveq2d | ⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) = ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) |
| 31 | 30 | fveq2d | ⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ) |
| 32 | 31 | fveq1d | ⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) ) |
| 33 | mpteq1 | ⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( 𝑥 ∈ 𝑛 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) | |
| 34 | 33 | oveq2d | ⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |
| 35 | 32 34 | eqeq12d | ⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ↔ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) |
| 36 | 28 35 | imbi12d | ⊢ ( 𝑛 = ( 𝑚 ∪ { 𝑎 } ) → ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ↔ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |
| 37 | raleq | ⊢ ( 𝑛 = 𝑁 → ( ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝐵 ↔ ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝐵 ) ) | |
| 38 | 37 | anbi2d | ⊢ ( 𝑛 = 𝑁 → ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝐵 ) ↔ ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝐵 ) ) ) |
| 39 | mpteq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) = ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) | |
| 40 | 39 | oveq2d | ⊢ ( 𝑛 = 𝑁 → ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) = ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) |
| 41 | 40 | fveq2d | ⊢ ( 𝑛 = 𝑁 → ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ) |
| 42 | 41 | fveq1d | ⊢ ( 𝑛 = 𝑁 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝐾 ) ) |
| 43 | mpteq1 | ⊢ ( 𝑛 = 𝑁 → ( 𝑥 ∈ 𝑛 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) = ( 𝑥 ∈ 𝑁 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) | |
| 44 | 43 | oveq2d | ⊢ ( 𝑛 = 𝑁 → ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |
| 45 | 42 44 | eqeq12d | ⊢ ( 𝑛 = 𝑁 → ( ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ↔ ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) |
| 46 | 38 45 | imbi12d | ⊢ ( 𝑛 = 𝑁 → ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑛 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑛 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑛 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ↔ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |
| 47 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ 𝑀 ) = ∅ | |
| 48 | 47 | oveq2i | ⊢ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) = ( 𝑃 Σg ∅ ) |
| 49 | eqid | ⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) | |
| 50 | 49 | gsum0 | ⊢ ( 𝑃 Σg ∅ ) = ( 0g ‘ 𝑃 ) |
| 51 | 48 50 | eqtri | ⊢ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) = ( 0g ‘ 𝑃 ) |
| 52 | 51 | fveq2i | ⊢ ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) = ( coe1 ‘ ( 0g ‘ 𝑃 ) ) |
| 53 | 52 | a1i | ⊢ ( 𝜑 → ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) = ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ) |
| 54 | 53 | fveq1d | ⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐾 ) ) |
| 55 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 56 | 1 49 55 | coe1z | ⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ ( 0g ‘ 𝑃 ) ) = ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ) |
| 57 | 3 56 | syl | ⊢ ( 𝜑 → ( coe1 ‘ ( 0g ‘ 𝑃 ) ) = ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ) |
| 58 | 57 | fveq1d | ⊢ ( 𝜑 → ( ( coe1 ‘ ( 0g ‘ 𝑃 ) ) ‘ 𝐾 ) = ( ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝐾 ) ) |
| 59 | fvex | ⊢ ( 0g ‘ 𝑅 ) ∈ V | |
| 60 | fvconst2g | ⊢ ( ( ( 0g ‘ 𝑅 ) ∈ V ∧ 𝐾 ∈ ℕ0 ) → ( ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝐾 ) = ( 0g ‘ 𝑅 ) ) | |
| 61 | 59 4 60 | sylancr | ⊢ ( 𝜑 → ( ( ℕ0 × { ( 0g ‘ 𝑅 ) } ) ‘ 𝐾 ) = ( 0g ‘ 𝑅 ) ) |
| 62 | 54 58 61 | 3eqtrd | ⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 0g ‘ 𝑅 ) ) |
| 63 | mpt0 | ⊢ ( 𝑥 ∈ ∅ ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) = ∅ | |
| 64 | 63 | oveq2i | ⊢ ( 𝑅 Σg ( 𝑥 ∈ ∅ ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( 𝑅 Σg ∅ ) |
| 65 | 55 | gsum0 | ⊢ ( 𝑅 Σg ∅ ) = ( 0g ‘ 𝑅 ) |
| 66 | 64 65 | eqtri | ⊢ ( 𝑅 Σg ( 𝑥 ∈ ∅ ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) = ( 0g ‘ 𝑅 ) |
| 67 | 62 66 | eqtr4di | ⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ∅ ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |
| 68 | 67 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ ∅ 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ∅ ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ∅ ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |
| 69 | 1 2 3 4 | coe1fzgsumdlem | ⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ∧ 𝜑 ) → ( ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |
| 70 | 69 | 3expia | ⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ) → ( 𝜑 → ( ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) ) |
| 71 | 70 | a2d | ⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ) → ( ( 𝜑 → ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) → ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) ) |
| 72 | impexp | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ↔ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) | |
| 73 | impexp | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ↔ ( 𝜑 → ( ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) | |
| 74 | 71 72 73 | 3imtr4g | ⊢ ( ( 𝑚 ∈ Fin ∧ ¬ 𝑎 ∈ 𝑚 ) → ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑚 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑚 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑚 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) → ( ( 𝜑 ∧ ∀ 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ ( 𝑚 ∪ { 𝑎 } ) ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |
| 75 | 16 26 36 46 68 74 | findcard2s | ⊢ ( 𝑁 ∈ Fin → ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) |
| 76 | 75 | expd | ⊢ ( 𝑁 ∈ Fin → ( 𝜑 → ( ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) ) |
| 77 | 6 76 | mpcom | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ 𝑁 𝑀 ∈ 𝐵 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) ) |
| 78 | 5 77 | mpd | ⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑥 ∈ 𝑁 ↦ 𝑀 ) ) ) ‘ 𝐾 ) = ( 𝑅 Σg ( 𝑥 ∈ 𝑁 ↦ ( ( coe1 ‘ 𝑀 ) ‘ 𝐾 ) ) ) ) |