This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a function over the nonnegative integers is finitely supported, then there is an upper bound for the arguments resulting in nonzero values. (Contributed by AV, 6-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsuppmapnn0ub | ⊢ ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 finSupp 𝑍 → ∃ 𝑚 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) ∧ 𝐹 finSupp 𝑍 ) → 𝐹 finSupp 𝑍 ) | |
| 2 | 1 | fsuppimpd | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) ∧ 𝐹 finSupp 𝑍 ) → ( 𝐹 supp 𝑍 ) ∈ Fin ) |
| 3 | 2 | ex | ⊢ ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 finSupp 𝑍 → ( 𝐹 supp 𝑍 ) ∈ Fin ) ) |
| 4 | elmapfn | ⊢ ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) → 𝐹 Fn ℕ0 ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) → 𝐹 Fn ℕ0 ) |
| 6 | nn0ex | ⊢ ℕ0 ∈ V | |
| 7 | 6 | a1i | ⊢ ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) → ℕ0 ∈ V ) |
| 8 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) → 𝑍 ∈ 𝑉 ) | |
| 9 | suppvalfn | ⊢ ( ( 𝐹 Fn ℕ0 ∧ ℕ0 ∈ V ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 supp 𝑍 ) = { 𝑥 ∈ ℕ0 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 } ) | |
| 10 | 5 7 8 9 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 supp 𝑍 ) = { 𝑥 ∈ ℕ0 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 } ) |
| 11 | 10 | eleq1d | ⊢ ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) → ( ( 𝐹 supp 𝑍 ) ∈ Fin ↔ { 𝑥 ∈ ℕ0 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 } ∈ Fin ) ) |
| 12 | rabssnn0fi | ⊢ ( { 𝑥 ∈ ℕ0 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 } ∈ Fin ↔ ∃ 𝑚 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ) | |
| 13 | nne | ⊢ ( ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ↔ ( 𝐹 ‘ 𝑥 ) = 𝑍 ) | |
| 14 | 13 | imbi2i | ⊢ ( ( 𝑚 < 𝑥 → ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ↔ ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
| 15 | 14 | ralbii | ⊢ ( ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ↔ ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
| 16 | 15 | rexbii | ⊢ ( ∃ 𝑚 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ¬ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 ) ↔ ∃ 𝑚 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
| 17 | 12 16 | sylbb | ⊢ ( { 𝑥 ∈ ℕ0 ∣ ( 𝐹 ‘ 𝑥 ) ≠ 𝑍 } ∈ Fin → ∃ 𝑚 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) |
| 18 | 11 17 | biimtrdi | ⊢ ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) → ( ( 𝐹 supp 𝑍 ) ∈ Fin → ∃ 𝑚 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) ) |
| 19 | 3 18 | syld | ⊢ ( ( 𝐹 ∈ ( 𝑅 ↑m ℕ0 ) ∧ 𝑍 ∈ 𝑉 ) → ( 𝐹 finSupp 𝑍 → ∃ 𝑚 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑚 < 𝑥 → ( 𝐹 ‘ 𝑥 ) = 𝑍 ) ) ) |