This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two univariate polynomials given as (finitely supported) sum of scaled monomials are equal iff the corresponding coefficients are equal. (Contributed by AV, 21-Nov-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumply1eq.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| gsumply1eq.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | ||
| gsumply1eq.e | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | ||
| gsumply1eq.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| gsumply1eq.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | ||
| gsumply1eq.m | ⊢ ∗ = ( ·𝑠 ‘ 𝑃 ) | ||
| gsumply1eq.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| gsumply1eq.a | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 ) | ||
| gsumply1eq.f1 | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) finSupp 0 ) | ||
| gsumply1eq.b | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐵 ∈ 𝐾 ) | ||
| gsumply1eq.f2 | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐵 ) finSupp 0 ) | ||
| gsumply1eq.o | ⊢ ( 𝜑 → 𝑂 = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) | ||
| gsumply1eq.q | ⊢ ( 𝜑 → 𝑄 = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) | ||
| Assertion | gsumply1eq | ⊢ ( 𝜑 → ( 𝑂 = 𝑄 ↔ ∀ 𝑘 ∈ ℕ0 𝐴 = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumply1eq.p | ⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) | |
| 2 | gsumply1eq.x | ⊢ 𝑋 = ( var1 ‘ 𝑅 ) | |
| 3 | gsumply1eq.e | ⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) | |
| 4 | gsumply1eq.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 5 | gsumply1eq.k | ⊢ 𝐾 = ( Base ‘ 𝑅 ) | |
| 6 | gsumply1eq.m | ⊢ ∗ = ( ·𝑠 ‘ 𝑃 ) | |
| 7 | gsumply1eq.0 | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 8 | gsumply1eq.a | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 ) | |
| 9 | gsumply1eq.f1 | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) finSupp 0 ) | |
| 10 | gsumply1eq.b | ⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐵 ∈ 𝐾 ) | |
| 11 | gsumply1eq.f2 | ⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐵 ) finSupp 0 ) | |
| 12 | gsumply1eq.o | ⊢ ( 𝜑 → 𝑂 = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) | |
| 13 | gsumply1eq.q | ⊢ ( 𝜑 → 𝑄 = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) | |
| 14 | eqid | ⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) | |
| 15 | 1 14 2 3 4 5 6 7 8 9 | gsumsmonply1 | ⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 16 | 12 15 | eqeltrd | ⊢ ( 𝜑 → 𝑂 ∈ ( Base ‘ 𝑃 ) ) |
| 17 | 1 14 2 3 4 5 6 7 10 11 | gsumsmonply1 | ⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 18 | 13 17 | eqeltrd | ⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝑃 ) ) |
| 19 | eqid | ⊢ ( coe1 ‘ 𝑂 ) = ( coe1 ‘ 𝑂 ) | |
| 20 | eqid | ⊢ ( coe1 ‘ 𝑄 ) = ( coe1 ‘ 𝑄 ) | |
| 21 | 1 14 19 20 | ply1coe1eq | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑂 ∈ ( Base ‘ 𝑃 ) ∧ 𝑄 ∈ ( Base ‘ 𝑃 ) ) → ( ∀ 𝑘 ∈ ℕ0 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑄 ) ‘ 𝑘 ) ↔ 𝑂 = 𝑄 ) ) |
| 22 | 21 | bicomd | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑂 ∈ ( Base ‘ 𝑃 ) ∧ 𝑄 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑂 = 𝑄 ↔ ∀ 𝑘 ∈ ℕ0 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑄 ) ‘ 𝑘 ) ) ) |
| 23 | 4 16 18 22 | syl3anc | ⊢ ( 𝜑 → ( 𝑂 = 𝑄 ↔ ∀ 𝑘 ∈ ℕ0 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑄 ) ‘ 𝑘 ) ) ) |
| 24 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑂 = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 25 | nfcv | ⊢ Ⅎ 𝑙 ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) | |
| 26 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑘 ⦌ 𝐴 | |
| 27 | nfcv | ⊢ Ⅎ 𝑘 ∗ | |
| 28 | nfcv | ⊢ Ⅎ 𝑘 ( 𝑙 ↑ 𝑋 ) | |
| 29 | 26 27 28 | nfov | ⊢ Ⅎ 𝑘 ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) |
| 30 | csbeq1a | ⊢ ( 𝑘 = 𝑙 → 𝐴 = ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ) | |
| 31 | oveq1 | ⊢ ( 𝑘 = 𝑙 → ( 𝑘 ↑ 𝑋 ) = ( 𝑙 ↑ 𝑋 ) ) | |
| 32 | 30 31 | oveq12d | ⊢ ( 𝑘 = 𝑙 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) ) |
| 33 | 25 29 32 | cbvmpt | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) ) |
| 34 | 33 | oveq2i | ⊢ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) |
| 35 | 24 34 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑂 = ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) |
| 36 | 35 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( coe1 ‘ 𝑂 ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) ) |
| 37 | 36 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) ‘ 𝑘 ) ) |
| 38 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 39 | nfv | ⊢ Ⅎ 𝑙 𝐴 ∈ 𝐾 | |
| 40 | 26 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∈ 𝐾 |
| 41 | 30 | eleq1d | ⊢ ( 𝑘 = 𝑙 → ( 𝐴 ∈ 𝐾 ↔ ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∈ 𝐾 ) ) |
| 42 | 39 40 41 | cbvralw | ⊢ ( ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 ↔ ∀ 𝑙 ∈ ℕ0 ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∈ 𝐾 ) |
| 43 | 8 42 | sylib | ⊢ ( 𝜑 → ∀ 𝑙 ∈ ℕ0 ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∈ 𝐾 ) |
| 44 | 43 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑙 ∈ ℕ0 ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∈ 𝐾 ) |
| 45 | nfcv | ⊢ Ⅎ 𝑙 𝐴 | |
| 46 | 45 26 30 | cbvmpt | ⊢ ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) = ( 𝑙 ∈ ℕ0 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ) |
| 47 | 46 9 | eqbrtrrid | ⊢ ( 𝜑 → ( 𝑙 ∈ ℕ0 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ) finSupp 0 ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑙 ∈ ℕ0 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ) finSupp 0 ) |
| 49 | simpr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) | |
| 50 | 1 14 2 3 38 5 6 7 44 48 49 | gsummoncoe1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) ‘ 𝑘 ) = ⦋ 𝑘 / 𝑙 ⦌ ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ) |
| 51 | csbcow | ⊢ ⦋ 𝑘 / 𝑙 ⦌ ⦋ 𝑙 / 𝑘 ⦌ 𝐴 = ⦋ 𝑘 / 𝑘 ⦌ 𝐴 | |
| 52 | csbid | ⊢ ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 𝐴 | |
| 53 | 51 52 | eqtri | ⊢ ⦋ 𝑘 / 𝑙 ⦌ ⦋ 𝑙 / 𝑘 ⦌ 𝐴 = 𝐴 |
| 54 | 50 53 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) ‘ 𝑘 ) = 𝐴 ) |
| 55 | 37 54 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = 𝐴 ) |
| 56 | 13 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑄 = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 57 | nfcv | ⊢ Ⅎ 𝑙 ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) | |
| 58 | nfcsb1v | ⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑘 ⦌ 𝐵 | |
| 59 | 58 27 28 | nfov | ⊢ Ⅎ 𝑘 ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) |
| 60 | csbeq1a | ⊢ ( 𝑘 = 𝑙 → 𝐵 = ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) | |
| 61 | 60 31 | oveq12d | ⊢ ( 𝑘 = 𝑙 → ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) |
| 62 | 57 59 61 | cbvmpt | ⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) |
| 63 | 62 | a1i | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) |
| 64 | 63 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) |
| 65 | 56 64 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑄 = ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) |
| 66 | 65 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( coe1 ‘ 𝑄 ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) ) |
| 67 | 66 | fveq1d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑄 ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) ‘ 𝑘 ) ) |
| 68 | nfv | ⊢ Ⅎ 𝑙 𝐵 ∈ 𝐾 | |
| 69 | 58 | nfel1 | ⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∈ 𝐾 |
| 70 | 60 | eleq1d | ⊢ ( 𝑘 = 𝑙 → ( 𝐵 ∈ 𝐾 ↔ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∈ 𝐾 ) ) |
| 71 | 68 69 70 | cbvralw | ⊢ ( ∀ 𝑘 ∈ ℕ0 𝐵 ∈ 𝐾 ↔ ∀ 𝑙 ∈ ℕ0 ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∈ 𝐾 ) |
| 72 | 10 71 | sylib | ⊢ ( 𝜑 → ∀ 𝑙 ∈ ℕ0 ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∈ 𝐾 ) |
| 73 | 72 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑙 ∈ ℕ0 ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∈ 𝐾 ) |
| 74 | nfcv | ⊢ Ⅎ 𝑙 𝐵 | |
| 75 | 74 58 60 | cbvmpt | ⊢ ( 𝑘 ∈ ℕ0 ↦ 𝐵 ) = ( 𝑙 ∈ ℕ0 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
| 76 | 75 11 | eqbrtrrid | ⊢ ( 𝜑 → ( 𝑙 ∈ ℕ0 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) finSupp 0 ) |
| 77 | 76 | adantr | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑙 ∈ ℕ0 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) finSupp 0 ) |
| 78 | 1 14 2 3 38 5 6 7 73 77 49 | gsummoncoe1 | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) ‘ 𝑘 ) = ⦋ 𝑘 / 𝑙 ⦌ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
| 79 | csbcow | ⊢ ⦋ 𝑘 / 𝑙 ⦌ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 = ⦋ 𝑘 / 𝑘 ⦌ 𝐵 | |
| 80 | csbid | ⊢ ⦋ 𝑘 / 𝑘 ⦌ 𝐵 = 𝐵 | |
| 81 | 79 80 | eqtri | ⊢ ⦋ 𝑘 / 𝑙 ⦌ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 = 𝐵 |
| 82 | 78 81 | eqtrdi | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) ‘ 𝑘 ) = 𝐵 ) |
| 83 | 67 82 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑄 ) ‘ 𝑘 ) = 𝐵 ) |
| 84 | 55 83 | eqeq12d | ⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑄 ) ‘ 𝑘 ) ↔ 𝐴 = 𝐵 ) ) |
| 85 | 84 | ralbidva | ⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ℕ0 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑄 ) ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ ℕ0 𝐴 = 𝐵 ) ) |
| 86 | 23 85 | bitrd | ⊢ ( 𝜑 → ( 𝑂 = 𝑄 ↔ ∀ 𝑘 ∈ ℕ0 𝐴 = 𝐵 ) ) |